
© Copyright 2012 EMC Corporation. All rights reserved. 

We’re Going to the 
Lua 

The Shift to a New Programming 
Language 

Identifying and analyzing application protocols with 
Parsers written in the Lua scripting language. 
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Introduction 

 Lua Overview 

Decoder Overview 

 Lua Parser API Overview 

Examples 

Roadmap 
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What is Lua? 

 Lua is a powerful, fast, lightweight, 
embeddable scripting language. 

 Features 
– Dynamically typed 
– Garbage collected 

Active community 

http://www.lua.org 
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What is and What isn’t Included 

 Lua 5.1.5 

Standard Libraries 
– string, table, math, coroutine 
– But not debug, io, os, package 
– http://www.lua.org/manual/5.1 

 Lua BitOp 1.0.2 
– Bitwise operations library 
– http://bitop.luajit.org 
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A Quick Decoder Process Overview 

 Packet Capture 

Session Assembly 

Session Parse 

 Packet, Meta and Session Persistence 
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Packet Capture 

 Per Packet Network/Transport layer analysis 
– Determine source/destination addresses and 

ports 
– Identify application payload offset and size 

Network Rules 
– Executed for each packet 
– Can truncate/filter packets 

 Packets that are not filtered are sent to the 
Session Assembly 
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Session Assembly 

Session State 
– Packets arriving from Capture Process are added 

to existing Sessions or create new Sessions 

Accumulate Packets until: 
– Session size exceeded (32MB) 
– Packet timeout reached (60 seconds) 
– Decoder resources exceeded 

Send Session to Session Parse 
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Session Parse 

 Identify application protocols and extract 
meta information 

– Parsers 
System, Search, Snort Rules, Flex, Lua 

– Feeds 
– Application Rules 

Multiple Sessions independently parsed in 
parallel 

Send Packets, Session and Meta to 
Persistence Process 
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Packet, Session and Meta 
Persistence 

 Packets, Session and Meta written to disk 

Sessions and Meta available to external 
processes 

– Concentrator Aggregation 
– SDK/REST API calls 
– Applications: 

Informer, Investigator, Security Analytics, 
Spectrum, Visualize, etc… 
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Identify DNS on port 5300 
local name = "DnsAlt" 
local description = "DNS Alternate Port Identification" 
 
-- create the parser object 
local dnsParser = nw:createParser(name, description) 
 
-- define an event callback function 
function dnsParser:onPort5300(portNumber) 
 -- set the application type for this session to 53 (DNS) 
 nw:setAppType(53) 
end 
 
-- define a table of event callbacks to functions 
local callbacksTable = { 
 -- integer keys indicate the associated function will be called for a 
 -- matching port value 
 [5300] = dnsParser.onPort5300 
} 
 
-- set the callbacks for this parser 
dnsParser:setCallbacks(callbacksTable) 
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Parser Structure 

Defined in a single file (e.g. dnsalt.lua) 

 Initialization 
– Create the parser object 

Define Event Handlers 
– Lua functions associated with the parser object 
– Implement parser specific logic 

Event Handler Registration 
– Maps parser object functions to specific events 
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Lua Parser API 
 nw 

– Parser definition 
– Logging 
– Access to session and stream properties (e.g. 

source/destination, packet counts, payload bytes, 
etc…) 

– Meta creation 
– Application payload access via nwpayload objects 

 nwpayload 
– Interface to the application payload of a stream 
– Implements a subset of the Lua string library (e.g. 

byte, find, sub, equal) 
– Numeric conversion functions 
– Packet payload scoping and iteration 
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Parser Execution 

 Initialization 
– Occurs at system startup and parser reload 
– Lua file is executed 
– OnInit event is fired 

 Capture start/stop 
– OnStart, OnStop 

 Session/Stream Callbacks 
– OnReset, OnSessionBegin/End, OnStreamBegin/End 

 Content Callbacks 
– Ports, tokens and meta callbacks 
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Parser State 

Each parser executes in its own environment 
– No direct references to state of other parsers 
– No interference with environment of other 

parsers 

Variable state maintained across sessions 
– Parser is responsible for initializing necessary 

values before session parsing (OnReset event) 
– nwpayload objects invalidated 
– A given parser instance will not see every session 

so using parser state to track statistics 
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Registering Event Callbacks 
local myParser = nw:createParser("myParser", "Event Callbacks Example") 
 
function myParser:onPort80(portNumber)  nw:logDebug("Found port 80!") end 
 
function myParser:onToken(tokenId, first, last)  nw:logDebug("Found token!") end 
 
function myParser:onSessionBegin()  nw:logDebug("Found session begin!") end 
 
function myParser:onAlert(metaId, value) nw:logDebug("Found alert!”) end 
 
local callbacksTable = { 
 [80]   = myParser.onPort80, -- port event 
 ["GET /"]   = myParser.onToken, -- token event 
 [nwevents.OnSessionBegin] = myParser.onSessionBegin, -- session event 
 [nw:LanguageKey("alert”)] = myParser.onAlert  -- meta callback 
} 
 
-- set the callbacks for this parser 
myParser:setCallbacks(callbacksTable) 
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Creating Meta 
local clientParser = nw:createParser("ClientParser", "Create client meta for User-Agent string.") 
 
-- define the client language key 
local lkClient = nw:LanguageKey("client") 
 
-- set the language keys that this parser can create 
clientParser:setKeys({lkClient}) 
 
-- define an event callback function 
function clientParser:onUserAgent(token, first, last) 
 -- create client meta of the first 10 bytes following the user agent header 
 nw:createMeta(self.keys.client, last + 1, last + 10) 
end 
 
local callbacksTable = { 
 ["\r\nUser-Agent"] = clientParser.onUserAgent 
} 
clientParser:setCallbacks(callbacksTable) 
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Payloads and Parser State 
-- token callback for "\n\rContent-type: " 
function httpParser:onContentType(token, first, last) 
 if not self.parsingHeaders then 
  -- currently not parsing an HTTP header 
  return 
 end 
 -- get a reference to the 50 bytes following the content type field name 
 local payload = nw:getPayload(last + 1, last + 50) 
 if self.foundResponse then 
  -- an HTTP response header was encountered, this is response content 
  local semi = payload:find(";") 
  if semi then 
   payload = payload:sub(1, semi - 1) 
  end 
  nw:createMeta(self.keys.content, payload) 
 else 
  -- this is a request content type, check if the content is a post 
  if self.request.foundPostQuery and 
     not payload:find("application/x-www-form-urlencoded") then 
   self.request.foundPostQuery = false 
  end 
 end 
end 
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Roadmap 

Available with the release of 9.8, Service 
Pack 1 

 Future Work 
– Performance! 
– Parser development tools 
– Parser performance metrics 
– Content 

▪ Migrate native parsers where applicable 
▪ Implement new parsers for availability via Live 

– Expand current API 
▪ Packet level analysis 
▪ Suggestions? 
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NetWitness Community 

 Please visit the relaunch of the NetWitness 
Community 

– https://community.emc.com/go/netwitness 
– Ask questions and get answers straight from the 

NetWitness developers 
– Post ideas for new features 

▪ Help contribute to the future direction of the product! 

https://community.emc.com/go/netwitness�


Thank you. 
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