
© Copyright 2012 EMC Corporation. All rights reserved.

We’re Going to the
Lua

The Shift to a New Programming
Language

Identifying and analyzing application protocols with
Parsers written in the Lua scripting language.

2 © Copyright 2012 EMC Corporation. All rights reserved.

Introduction

 Lua Overview

Decoder Overview

 Lua Parser API Overview

Examples

Roadmap

3 © Copyright 2012 EMC Corporation. All rights reserved.

What is Lua?

 Lua is a powerful, fast, lightweight,
embeddable scripting language.

 Features
– Dynamically typed
– Garbage collected

Active community

http://www.lua.org

4 © Copyright 2012 EMC Corporation. All rights reserved.

What is and What isn’t Included

 Lua 5.1.5

Standard Libraries
– string, table, math, coroutine
– But not debug, io, os, package
– http://www.lua.org/manual/5.1

 Lua BitOp 1.0.2
– Bitwise operations library
– http://bitop.luajit.org

5 © Copyright 2012 EMC Corporation. All rights reserved.

A Quick Decoder Process Overview

 Packet Capture

Session Assembly

Session Parse

 Packet, Meta and Session Persistence

6 © Copyright 2012 EMC Corporation. All rights reserved.

Packet Capture

 Per Packet Network/Transport layer analysis
– Determine source/destination addresses and

ports
– Identify application payload offset and size

Network Rules
– Executed for each packet
– Can truncate/filter packets

 Packets that are not filtered are sent to the
Session Assembly

7 © Copyright 2012 EMC Corporation. All rights reserved.

Session Assembly

Session State
– Packets arriving from Capture Process are added

to existing Sessions or create new Sessions

Accumulate Packets until:
– Session size exceeded (32MB)
– Packet timeout reached (60 seconds)
– Decoder resources exceeded

Send Session to Session Parse

8 © Copyright 2012 EMC Corporation. All rights reserved.

Session Parse

 Identify application protocols and extract
meta information

– Parsers
System, Search, Snort Rules, Flex, Lua

– Feeds
– Application Rules

Multiple Sessions independently parsed in
parallel

Send Packets, Session and Meta to
Persistence Process

9 © Copyright 2012 EMC Corporation. All rights reserved.

Packet, Session and Meta
Persistence

 Packets, Session and Meta written to disk

Sessions and Meta available to external
processes

– Concentrator Aggregation
– SDK/REST API calls
– Applications:

Informer, Investigator, Security Analytics,
Spectrum, Visualize, etc…

10 © Copyright 2012 EMC Corporation. All rights reserved.

Identify DNS on port 5300
local name = "DnsAlt"
local description = "DNS Alternate Port Identification"

-- create the parser object
local dnsParser = nw:createParser(name, description)

-- define an event callback function
function dnsParser:onPort5300(portNumber)
 -- set the application type for this session to 53 (DNS)
 nw:setAppType(53)
end

-- define a table of event callbacks to functions
local callbacksTable = {
 -- integer keys indicate the associated function will be called for a
 -- matching port value
 [5300] = dnsParser.onPort5300
}

-- set the callbacks for this parser
dnsParser:setCallbacks(callbacksTable)

11 © Copyright 2012 EMC Corporation. All rights reserved.

Parser Structure

Defined in a single file (e.g. dnsalt.lua)

 Initialization
– Create the parser object

Define Event Handlers
– Lua functions associated with the parser object
– Implement parser specific logic

Event Handler Registration
– Maps parser object functions to specific events

12 © Copyright 2012 EMC Corporation. All rights reserved.

Lua Parser API
 nw

– Parser definition
– Logging
– Access to session and stream properties (e.g.

source/destination, packet counts, payload bytes,
etc…)

– Meta creation
– Application payload access via nwpayload objects

 nwpayload
– Interface to the application payload of a stream
– Implements a subset of the Lua string library (e.g.

byte, find, sub, equal)
– Numeric conversion functions
– Packet payload scoping and iteration

13 © Copyright 2012 EMC Corporation. All rights reserved.

Parser Execution

 Initialization
– Occurs at system startup and parser reload
– Lua file is executed
– OnInit event is fired

 Capture start/stop
– OnStart, OnStop

 Session/Stream Callbacks
– OnReset, OnSessionBegin/End, OnStreamBegin/End

 Content Callbacks
– Ports, tokens and meta callbacks

14 © Copyright 2012 EMC Corporation. All rights reserved.

Parser State

Each parser executes in its own environment
– No direct references to state of other parsers
– No interference with environment of other

parsers

Variable state maintained across sessions
– Parser is responsible for initializing necessary

values before session parsing (OnReset event)
– nwpayload objects invalidated
– A given parser instance will not see every session

so using parser state to track statistics

15 © Copyright 2012 EMC Corporation. All rights reserved.

Registering Event Callbacks
local myParser = nw:createParser("myParser", "Event Callbacks Example")

function myParser:onPort80(portNumber) nw:logDebug("Found port 80!") end

function myParser:onToken(tokenId, first, last) nw:logDebug("Found token!") end

function myParser:onSessionBegin() nw:logDebug("Found session begin!") end

function myParser:onAlert(metaId, value) nw:logDebug("Found alert!”) end

local callbacksTable = {
 [80] = myParser.onPort80, -- port event
 ["GET /"] = myParser.onToken, -- token event
 [nwevents.OnSessionBegin] = myParser.onSessionBegin, -- session event
 [nw:LanguageKey("alert”)] = myParser.onAlert -- meta callback
}

-- set the callbacks for this parser
myParser:setCallbacks(callbacksTable)

16 © Copyright 2012 EMC Corporation. All rights reserved.

Creating Meta
local clientParser = nw:createParser("ClientParser", "Create client meta for User-Agent string.")

-- define the client language key
local lkClient = nw:LanguageKey("client")

-- set the language keys that this parser can create
clientParser:setKeys({lkClient})

-- define an event callback function
function clientParser:onUserAgent(token, first, last)
 -- create client meta of the first 10 bytes following the user agent header
 nw:createMeta(self.keys.client, last + 1, last + 10)
end

local callbacksTable = {
 ["\r\nUser-Agent"] = clientParser.onUserAgent
}
clientParser:setCallbacks(callbacksTable)

17 © Copyright 2012 EMC Corporation. All rights reserved.

Payloads and Parser State
-- token callback for "\n\rContent-type: "
function httpParser:onContentType(token, first, last)
 if not self.parsingHeaders then
 -- currently not parsing an HTTP header
 return
 end
 -- get a reference to the 50 bytes following the content type field name
 local payload = nw:getPayload(last + 1, last + 50)
 if self.foundResponse then
 -- an HTTP response header was encountered, this is response content
 local semi = payload:find(";")
 if semi then
 payload = payload:sub(1, semi - 1)
 end
 nw:createMeta(self.keys.content, payload)
 else
 -- this is a request content type, check if the content is a post
 if self.request.foundPostQuery and
 not payload:find("application/x-www-form-urlencoded") then
 self.request.foundPostQuery = false
 end
 end
end

18 © Copyright 2012 EMC Corporation. All rights reserved.

Roadmap

Available with the release of 9.8, Service
Pack 1

 Future Work
– Performance!
– Parser development tools
– Parser performance metrics
– Content

▪ Migrate native parsers where applicable
▪ Implement new parsers for availability via Live

– Expand current API
▪ Packet level analysis
▪ Suggestions?

19 © Copyright 2012 EMC Corporation. All rights reserved.

NetWitness Community

 Please visit the relaunch of the NetWitness
Community

– https://community.emc.com/go/netwitness
– Ask questions and get answers straight from the

NetWitness developers
– Post ideas for new features

▪ Help contribute to the future direction of the product!

https://community.emc.com/go/netwitness�

Thank you.

	We’re Going to the Lua
	Introduction
	What is Lua?
	What is and What isn’t Included
	A Quick Decoder Process Overview
	Packet Capture
	Session Assembly
	Session Parse
	Packet, Session and Meta Persistence
	Identify DNS on port 5300
	Parser Structure
	Lua Parser API
	Parser Execution
	Parser State
	Registering Event Callbacks
	Creating Meta
	Payloads and Parser State
	Roadmap
	NetWitness Community
	Slide Number 20

