
 1

DETECTING APT USING ANOMALOUS
WINDOWS REMOTE MANAGEMENT
METHODS AND DYNAMIC RPC
ENDPOINT MAPPING

Much has been said regarding Advanced Persistent Threats (APTs) in the last few
years. To many IT managers and departments, the acronym alone conjures thoughts
of nation-states conducting highly intricate and advanced attacks, targeting
government and critical infrastructure and causing catastrophic intrusions. However,
these actors will only be as advanced as they need to be to accomplish their objective,
and in many instances they are able to utilize existing technologies and policies to do
this.

There are a number of inherent methods within Windows environments that allow
adversaries to conduct actions that achieve their objectives without the use of
advanced malware. The issue with these native methods is that they all have
legitimate use cases. As such, determining the use of these utilities on the network as
being malicious or benign is heavily dependent on an organization’s knowledge of
their environment, and having well defined intercommunication policies. This issue
only increases with the size of the organization. In many cases, a lack of insight or
visibility into an organization’s own technologies, practices, and policies allow the
adversary to leverage them against an organization. This allows threat actors to hide
in plain sight, minimizing exposure of their more advanced tools and indicators while
maximizing their access. This report will discuss some of the methods that
adversaries use against organizations, why they are effective, and methods to
leverage RSA Security Analytics and RSA ECAT (Enterprise Compromise Assessment
Tool) to detect and combat these threats.

KEY POINTS
• Adversaries can leverage

methods that are often used
for legitimate use cases in
order to commit malicious
actions without the use of
advanced malware

• It is often difficult to
distinguish between genuine
activity and misuse

• RSA Security Analytics and RSA
ECAT can be leveraged to
detect and combat these
threats

• Related parsers have been
delieved to customers via RSA
Live and posted on the RSA
Security Analytics Community
(rsa.im/SAcommunity)

OVERVIEW
One of the primary methods in which APT actors utilize existing architecture is by using Windows interconnectivity to increase their
foothold into the network. Most commonly, allowed interaction between systems allows attackers to conduct lateral movement. This
allows attackers to navigate from the initial compromised hosts to the more high-value targets in the environment. Some of the
methods used to compromise additional hosts and move throughout the environment are as follows:

• Manually Scheduling Tasks Remotely

o At.exe command

o Schtasks.exe command

• Creating/Modifing Remote Services

o Service Control (sc.exe command)

• Remote execution / Reconnaisance

o Windows Management Instrumentation

The difficulty with combatting these methods is that any of them may have legitimate use cases within an environment. This serves
to increase the utility of these methods to attackers, as the signal-to-noise ratio of malicious use to legitimate use is often very high.
Also, these tools are legitimate binaries and methods in Windows, so the detection of malicious use by endpoint protection
mechanisms is consistently very low. Given this exploitation of legitimate communication between systems, it is much more
important to understand the environment in which this activity is seen if response personnel are to combat these threats. This
report will look at the known methods within the protocols used by these utilities to determine their use on the network, so that the
activity can be compared to the legitimate use cases of an environment to determine possible malicious activity.

AT.EXE
The at command was implemented in Windows 2000 as a method of manually scheduling tasks from the command line.1 It was
designed to allow administrators to schedule tasks on host or remote systems. However, the command still exists, and is operable,
up to Windows 7 and Server 2008 systems. Attackers can use this command to create immediate or longer-term tasks that allow
them to execute commands on remote systems. The at command works by:

1. Connecting to the IPC$ share on the remote system over TCP/445

2. Creating a named pipe named “atsvc”

3. Sending a JobAdd request with the command to be run

The JobAdd request is useful in detecting this type of traffic. Since the at command will submit a known UUID in the bind request to
port TCP/445, this value can be detected, and parsed through the stream to the JobAdd request.2

1 “How To Use the At command to Schedule Tasks”, http://support.microsoft.com/kb/313565
2 “[MS-TSCH]: Task Scheduler Service Remoting Protocol”, http://download.microsoft.com/download/9/5/E/95EF66AF-9026-4BB0-A41D-
A4F81802D92C/[MS-TSCH].pdf

Figure 1: ATSVC UUID Being Passed During RPC Bind Request

As the JobAdd request is well defined in the “Task Scheduler Remoting Protocol” documentation, the command location and length
fields can be parsed to retrieve and register the command being sent into meta.

Figure 2: Length Value and Command String in JobAdd Request

Figure 3: Meta Created from JobAdd Request

Once the remote system receives the request, it creates a .job file under c:\WINDOWS\System32\Tasks with a file name of At<job
number>.job. The ECAT agent will see this, and show the command to be run under the “Scheduled Tasks” Category.

Figure 4: cmd.exe Sent via at Command in Scheduled Tasks

Upon a full scan, ECAT will download the .job files from the client. The .job files can be manually reviewed by downloading the files
from the Files directory under Server in the ECAT directory.

Figure 5: At.job files in <ECAT Directory>\Server\Files\A

SCHEDULED TASKS (SCHTASKS.EXE)
The schtasks command was introduced with Windows XP/Server 2003 as a replacement method for the at command to allow
administrators to schedule jobs from the command line.3 As such, adversaries can utilize this functionality to exploit the same attack
vector as with the at command.

While the at command uses a well-known endpoint in the form of the named pipe “atsvc”, the schtasks command uses dynamic RPC
endpoint mapping to determine its communication port. As such, it submits the ITaskSchedulerService UUID to the RPC endpoint
mapping port (TCP/135) and receives a port assignment with which to begin communication.

3 “Schtasks.exe”, http://msdn.microsoft.com/en-us/library/windows/desktop/bb736357(v=vs.85).aspx

Figure 6: ITaskSchedulerService UUID Passed to EPMAP

As the UUID for this service is known, Security Analytics can create meta when this UUID is seen passed with the appropriate
protocol payload.4

Figure 7: Meta Created from ITaskSchedulerService EPMAP Request

Once the job is scheduled with the Task Scheduler, the ECAT agent will recognize it as the command being executed by the job. The
binary that is scheduled to be run will appear in the “Scheduled Tasks” category in the ECAT server UI in the same manner as the at

command result in

Figure 4.

SERVICE CONTROL (SC.EXE)
Another method in which attackers will interact with other systems over the network is by using the sc command. The sc command
was introduced with Windows NT 3.51 and included on endpoints as of Windows XP. The sc command uses the Service Control
Manager Remote Protocol to interact with the Service Control Manger on the local, or remote, system. This command was designed
to allow administrator to create, control, or remove services from the command line. It is commonly used by attackers to create

4 “[MS-TSCH]: Task Scheduler Service Remoting Protocol”, http://download.microsoft.com/download/9/5/E/95EF66AF-9026-4BB0-A41D-
A4F81802D92C/[MS-TSCH].pdf

new malicious services, disable services that may prove problematic, or remove services as necessary. While there are other
command line binaries that allow for control of services remotely (namely netsvc and instsvc), these do not allow for the creation of
new services remotely and as such, the sc command is more commonly preferred by attackers.5

Microsoft has allocated both an RPC interface UUID to present to the RPC endpoint mapping port, as well as a named pipe named
“svcctl”.

Figure 8: SVCCTL UUID Passed to EPMAP

As the UUID for this service is known, Security Analytics can create meta when this UUID is seen passed with the appropriate
protocol payload.6

Figure 9: Meta Created from Service Control Manager Remote Protocol EPMAP Request

As the purpose of this command is to interact with the database of installed services, ECAT will scan this database to allow the
review of host artifacts resultant from the command’s execution. The artifacts will be shown in the “Services” category in the
Console UI on the ECAT server.

5 “How to create a Windows service by using Sc.exe”, http://support.microsoft.com/kb/251192/en-us
6 “[MS-SCMR]: Service Control Manager Remote Protocol”, http://download.microsoft.com/download/9/5/E/95EF66AF-9026-4BB0-A41D-
A4F81802D92C/[MS-SCMR].pdf

Figure 10: Service Entry in Services Category within the ECAT Console User Interface

WMI
Windows Management Instrumentation (WMI) is described by Microsoft as “the infrastructure for management data and operations
on Windows-based operating systems.”7 It is the latest method provided by Microsoft to conduct administrative tasks on host and
remote systems via C++, Visual Basic, or the wmic command-line utility.

In order to connect to remote systems, one of two primary methods is used. The first is to specify the connection information in an
SWbemServices object using a moniker string.

Figure 11:SWbemServices Object Set with Moniker String8

This allows the script to communicate with a remote system using the user’s current credentials. However, this approach is limited
as alternate credentials cannot be supplied and this method is unable to connect to systems across domains.

The second method is more flexible, as it allows for specification of target computer, domain, username, and password.8 As the first
method doesn’t allow for on-the-fly use of stolen credentials, this second method is more attractive to adversaries. This method
involves using the ConnectServer method from SWbemLocator (IWbemLocator for C++ applications) to specify and conduct
connection operations.

Figure 12: ConnectServer Method in Visual Basic8

Both of these methods use the IWbemLevel1Login interface to connect to the management services interface within the requested
namespace. This is useful in detecting this traffic as the interface must use the pre-designated UUID from Microsoft. As the UUID for
this service is known, Security Analytics can create meta when this UUID is seen passed with the appropriate protocol payload.9

7 “Windows Management Instrumentation”, http://msdn.microsoft.com/en-us/library/aa394582(v=vs.85).aspx
8 “Connecting to WMI on a Remote Computer”, http://msdn.microsoft.com/en-us/library/aa389290(v=vs.85).aspx
9 “[MS-WMI]: Windows Management Instrumentation Remote Protocol”, http://download.microsoft.com/download/9/5/E/95EF66AF-9026-4BB0-A41D-
A4F81802D92C/[MS-WMI].pdf

Figure 13: Meta Created From IWbemLevel1Login UUID Passing to EPMAP and WMI Communication

In addition to passing the UUID to the RPC endpoint mapper, the UUID is also sent in remote requests along with parameters
containing queries and commands to be executed on the remote system. In the case that pktPrivacy is not set, these parameters
are sent to the remote system in the clear with a leading value of “__PARAMETERS”.

Figure 14: cmd.exe Displayed as “__PARAMETERS” Value

This value is resultant from the use of the __PARAMETERS class to set input parameters for the aforementioned WMI methods. By
detecting the “__PARAMETERS” values and removing the “abstract” values (__PARAMETERS is an abstract class), SA is able to
retrieve and register the parameters given to the WMI remote command, including queries and commands to be executed on the
remote system.10

10 “__PARAMETERS class”, http://msdn.microsoft.com/en-us/library/aa394667(v=vs.85).aspx

Figure 15: WMI Remote Commands Registered as Action Meta

Additionally, the use of the ExecQuery method is also interesting, as it allows adversaries to conduct actions and reconnaissance on

remote systems by conducting WQL (WMI Query Language) queries against the remote system. The ExecQuery method is defined in

Figure 16.

Figure 16: ExecQuery Visual Basic Method Definition

The strQueryLanguage parameter defines the query language to be used. Fortunately, this parameter must be defined with the
value “WQL”. The strQuery parameter is required, as it contains the value of the query to be executed. Without pktPrivacy, this
value is sent to the remote system in the clear. Knowing that the value of strQueryLanguage must be “WQL”, and that the following
parameter is the query to be executed, the query itself can be parsed and registered as meta for any session that contains the
IWbemLevel1Login UUID. The parser attached to this report will be necessary to create the meta shown in Figure 18.

Figure 17: strQueryLanguage and strQuery Values in Session

Figure 18: Meta Created from ExecQuery

CONCLUSION
As this report has shown, there are several methods that already exist in Windows environments that allow an adversary to conduct
lateral actions on systems within an environment. These methods are also difficult to distinguish between legitimate use cases and
misuse. While this report has shown ways in which Security Analytics and RSA’s Enterprise Compromise Assessment Tool (ECAT)
can assist security personnel and incident responders in detecting and reacting to these attacks, it is critical that organizations
maintain in-depth knowledge of their environments to maintain the ability to combat these more advanced threats.

The Security Analytics parser functionality that creates the meta values referenced in this report is now included in the updated
‘SMB_lua’ and ‘DCERPC’ parsers available from LIVE. A separate parser that provides only the referenced functionality has also been
posted on the RSA Security Analytics Community (rsa.im/SAcommunity) to demonstrate the parser methodology and custom
content functionality outlined in this report. This parser is provided as a sample and should not be placed into production if the
updated ‘SMB Lua’ and ‘DCERPC’ are already in use or without previous testing in your environment.

Copyright © 2014 EMC Corporation. All Rights Reserved.

EMC believes the information in this publication is accurate as of its publication date. The
information is subject to change without notice.

The information in this publication is provided “as is.” EMC Corporation makes no
representations or warranties of any kind with respect to the information in this publication,
and specifically disclaims implied warranties of merchantability or fitness for a particular
purpose.

Use, copying, and distribution of any EMC software described in this publication requires an
applicable software license.

For the most up-to-date listing of EMC product names, see EMC Corporation Trademarks on
EMC.com.

Part Number H13846

CONTACT US
To learn more about how EMC
products, services, and solutions can
help solve your business and IT
challenges, contact your local
representative or authorized reseller—
or visit us at www.emc.com/rsa.

