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Agenda 

• Introducing the model 

 

•How does it work? 

 

• Implementation details 

 



INTRODUCING THE MODEL 
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Analytics with the Netwitness Suite 

• The Netwitness Suite already provides a number of ways to analyze 

your data: 

• Investigation 

• Reports 

• Big Data 

• Parallel Coordinates 

• Alerts 

• Correlation 

• Data Science 

• But can we do more? 
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Trend analysis and baselining 

• Why not having trend analysis capabilities as well? 

• Common request among our users 

• Implicitly available in ESA but without a formalized implementation 

 

• When does it help? 

• Whenever a significant change in the rate 

of given value could imply a security issue 

• Not all the threats can be identified in this way! 
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Baselining model requirements 

• Generic enough to work with any meta key 

• Plug & play  

• Reusable across multiple rules 

• Suitable for production 

• Minimum performance impact 

• Persistent across service restart/reboot 
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Common challenges 

• To perform any statistical analysis, numbers 

are an obvious requirement 

• Have to be derived from the collected events first! 

• A solid way to count the number of 

occurrences is key 

• Buffering in the ESA memory all the events with their 

meta for a long timeframe before applying any 

calculation would not scale 

• A multi-stage approach is required to only 

store aggregated information in memory 



HOW DOES IT WORK? 
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How does it work 

• For each value of a given meta key, we will 

sum the number of occurrences: 

• This is done every minute 

• Then aggregated every 5 minutes 

• Then aggregated every hour 

• Then aggregated every day 

• For each hour and for each value, a 

baseline is created: 

• Mean 

• Standard Deviation 

8am – 9am: 
 

User1) mean=10; stddev = 2 
User2) mean=23; stddev = 15 
User3) mean=79; stddev = 5 

User3 

User2 
User1 
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How does it work (cont.) 

• Each hour 

• for each meta key 

• for each meta value 

• the number of occurrences is 

compared with the baseline of that hour 

• An alert is generated if there is a 

significant deviation 

• By default if the number of events is more than 

mean+sttdev or less then mean-sttdev 

• The same is done for each day 

 

mean 

stddev stddev 
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Trend analysis module in action 
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Trend analysis module in action 
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• What does a significant change in the rate 

of given value mean? 

• Do NOT use meta keys with too many unique values (e.g. 

ip.src) since would generate too many false positives 

• Focus on those with a few but significant unique values: 

• Browsers - uncommon client may be associated with malicious codes 

• Country source/destination - can help identifying attacks or potential data 

exfiltration 

• TLDs - uncommon TLDs can be an indicator of something strange 

happening 

• Combine multiple meta keys together 

• E.g username and browser,  

 

Possible Use Cases 
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1. Create a new ESA Advanced rule and copy and paste the EPL 
code provided in the last slide 

2. Append or customize the «baselineInput» statement(s) to feed the 
model with the meta key you want to monitor 

3. Activate trial mode and enable the rule 

4. Constantly monitor in H&W the amount of memory the rule is 
consuming 

5. Review the results at the end of the learning phase and 
increase/decrease «anomalyStddevTimes» as needed 

 

• The same approach can be leveraged in other custom rules 
whenever a very long timeframe has to be considered 

• Combined keys can be monitored by concatenating them 

 

Implementing the model 
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• Aggregation done in multiple steps: 

• Summarized data only is kept between each step to minimize 
performance impacts 

• The baseline is created over the last 30 days: 

• Can be customized 

• Statistics are saved on disk to persist across reboot/restart 

• Learning phase by default is 5 days: 

• Can be customized 

• This prevent alerting when no enough data is available  

• Anomaly is by default mean +/- 3*sttdev 

• Can be customized 

 

 

 

Implementation overview Events with 

all the meta 

1 minute 

Aggregated 

counters 

5 minutes 

Aggregated 

counters 

1 hour 

Aggregated 

counters 



IMPLEMENTATION DETAILS 
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Trend analysis EPL implementation summary 

1. Create time-based contexts 

2. Create data structures to store aggregated statistics 

3. Create a data structure to store the baseline statistics 

4. Every minute the values of a given meta key count are fed them into the baseline 
model 

5. Every 5 minutes / 1 hour / 1 day the data is aggregated, always for each meta 
value 

6. A baseline model is generated at the end of each hour and day 

7. Every hour, compare the number of events for each meta value with the baseline 
created for the same hour during the previous days and generate an alert if an 
anomaly is detected 

8. Every day, compare the number of events for each meta value with the baseline 
created during the previous days and generate an alert if an anomaly is detected 
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Trend analysis EPL implementation 

• Set the baseline model settings: 

/* duration in days of the learning phase during which no alerts will be triggered */ 

CREATE VARIABLE integer learningPhaseInDays = 5; 

 

/* the alert is triggered when the number of events is mean+/-anomalyStddevTimes*sttdev */ 

CREATE VARIABLE double anomalyStddevTimes = 3.0; 
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Trend analysis EPL implementation 

• Create time-based contexts within which the calculations are 

performed: 

CREATE CONTEXT contextEvery1Minute INITIATED @now AND PATTERN [every timer:at(*, *, *, *, 

*)] TERMINATED AFTER 1 min; 

 

CREATE CONTEXT contextEvery5Minutes INITIATED @now AND PATTERN [every timer:at(*/5, *, *, 

*, *)] TERMINATED AFTER 5 min; 

 

CREATE CONTEXT contextEvery1Hour INITIATED @now AND PATTERN [every timer:at(0, *, *, *, 

*)] TERMINATED AFTER 1 hour; 

 

CREATE CONTEXT contextEvery1Day INITIATED @now AND PATTERN [every timer:at(0, 0, *, *, *)] 

TERMINATED AFTER 1 day; 
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Trend analysis EPL implementation 

• Create data structures to store aggregated statistics lasting enough 

time to allow the sub-sequent data aggregation: 
CREATE WINDOW baselineInput.win:time(5 minutes) (metaKey string, metaValue string, 

eventCount long); 

 

CREATE WINDOW baselineEvery5MinutesData.win:time(60 minutes) (metaKey string, metaValue 

string, eventCount long); 

 

@RSAPersist 

CREATE WINDOW baselineEvery1HourData.win:time(30 days) (metaKey string, metaValue string, 

eventCount long, timeframe string); 

 

@RSAPersist 

CREATE WINDOW baselineEvery1DayData.win:time(30 days) (metaKey string, metaValue string, 

eventCount long, timeframe string); 

 

@RSAPersist 

CREATE WINDOW baseline.std:groupwin(metaKey, metaValue, timeframe).win:length(1)(metaKey 

string, metaValue string, timeframe string, average double, dev double); 
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Trend analysis EPL implementation 

• Every minute count the values of a given meta key and feed them into 

the model: 

@Name('baselineInput1') 

CONTEXT contextEvery1Minute  

 

INSERT INTO baselineInput  

 

SELECT 'event_cat_name' AS metaKey, event_cat_name AS metaValue, COUNT(*) AS eventCount  

 

FROM Event(event_cat_name IS NOT NULL)  

 

GROUP BY event_cat_name  

 

OUTPUT snapshot WHEN TERMINATED; 
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Trend analysis EPL implementation 

• Every 5 minutes the data is aggregated, always for each meta value: 

@Name('baselineAggregateEvery5Minutes')  

 

CONTEXT contextEvery5Minutes  

 

INSERT INTO baselineEvery5MinutesData  

 

SELECT metaKey, metaValue, SUM(eventCount) AS eventCount  

 

FROM baselineInput  

 

GROUP BY metaKey,metaValue  

 

OUTPUT snapshot WHEN TERMINATED; 
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Trend analysis EPL implementation 

• Every hour the data is aggregated again 

@Name('baselineAggregateEvery1Hour')  

 

CONTEXT contextEvery1Hour  

 

INSERT INTO baselineEvery1HourData  

 

SELECT metaKey, metaValue, SUM(eventCount) AS eventCount, 

'hour_'||current_timestamp().get('hour').toString()  AS timeframe  

 

FROM baselineEvery5MinutesData  

 

GROUP BY metaKey,metaValue  

 

OUTPUT snapshot WHEN TERMINATED; 
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Trend analysis EPL implementation 

• At the end of the day, aggregate once again the data: 

@Name('baselineAggregateEvery1Day') CONTEXT contextEvery1Day  

 

INSERT INTO baselineEvery1DayData  

 

SELECT metaKey, metaValue, SUM(eventCount) AS eventCount, 'day'  AS timeframe  

 

FROM baselineEvery1HourData  

 

GROUP BY metaKey,metaValue  

 

OUTPUT snapshot WHEN TERMINATED; 
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Trend analysis EPL implementation 

• At the end of the hour, calculate and store the baseline model for the 

previous hour: 
@Name('baselineGenerateByHour')  

 

INSERT INTO baseline  

 

SELECT metaKey,metaValue,timeframe,average,stddev AS dev  

 

FROM baselineEvery1HourData.std:groupwin(metaKey,metaValue,  

timeframe).stat:uni(eventCount, metaKey,metaValue, timeframe)  

 

GROUP BY metaKey,metaValue, timeframe  

 

HAVING datapoints >= learningPhaseInDays; 
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Trend analysis EPL implementation 

• Every hour, compare the number of events for each meta value with 

the baseline and generate an alert if an anomaly is detected: 
@Name('baselineAlertByHour')  

@RSAAlert(oneInSeconds=0) 

CONTEXT contextEvery1Hour  

SELECT baselineEvery1HourData.metaKey AS metaKey, baselineEvery1HourData.metaValue AS 

metaValue, baselineEvery1HourData.eventCount AS eventCount, 

baselineEvery1HourData.timeframe AS timeframe, baseline.average AS average, baseline.dev 

AS deviation  

 

FROM baselineEvery1HourData, baseline  

 

WHERE baselineEvery1HourData.metaKey = baseline.metaKey AND 

baselineEvery1HourData.metaValue = baseline.metaValue AND baselineEvery1HourData.timeframe 

= baseline.timeframe AND (baselineEvery1HourData.eventCount > 

(baseline.average+anomalyStddevTimes*baseline.dev) OR baselineEvery1HourData.eventCount < 

(baseline.average-anomalyStddevTimes*baseline.dev)) AND 

'hour_'||current_timestamp().get('hour').toString() = baselineEvery1HourData.timeframe 

OUTPUT snapshot WHEN TERMINATED; 
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Trend analysis EPL implementation 

• Every day compare the number of events for each meta value with the 

baseline and generate an alert if an anomaly is detected: 
@Name('baselineAlertByDay')  

@RSAAlert(oneInSeconds=0) 

CONTEXT contextEvery1Day  

 

SELECT baselineEvery1DayData.metaKey AS metaKey, baselineEvery1DayData.metaValue AS 

metaValue, baselineEvery1DayData.eventCount AS eventCount, baselineEvery1DayData.timeframe 

AS timeframe, baseline.average AS average, baseline.dev AS deviation  

 

FROM baselineEvery1DayData, baseline  

 

WHERE baselineEvery1DayData.metaKey = baseline.metaKey AND baselineEvery1DayData.metaValue 

= baseline.metaValue AND baselineEvery1DayData.timeframe = baseline.timeframe AND 

(baselineEvery1DayData.eventCount > (baseline.average+anomalyStddevTimes*baseline.dev) OR 

baselineEvery1DayData.eventCount < (baseline.average-anomalyStddevTimes*baseline.dev))  

OUTPUT snapshot WHEN TERMINATED; 
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Trend analysis EPL implementation 

• Every day compare the number of events for each meta value with the 

baseline and generate an alert if an anomaly is detected: 
@Name('baselineAlertByDay')  

@RSAAlert(oneInSeconds=0) 

CONTEXT contextEvery1Day  

 

SELECT baselineEvery1DayData.metaKey AS metaKey, baselineEvery1DayData.metaValue AS 

metaValue, baselineEvery1DayData.eventCount AS eventCount, baselineEvery1DayData.timeframe 

AS timeframe, baseline.average AS average, baseline.dev AS deviation  

 

FROM baselineEvery1DayData, baseline  

 

WHERE baselineEvery1DayData.metaKey = baseline.metaKey AND baselineEvery1DayData.metaValue 

= baseline.metaValue AND baselineEvery1DayData.timeframe = baseline.timeframe AND 

(baselineEvery1DayData.eventCount > (baseline.average+anomalyStddevTimes*baseline.dev) OR 

baselineEvery1DayData.eventCount < (baseline.average-anomalyStddevTimes*baseline.dev))  

OUTPUT snapshot WHEN TERMINATED; 
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Full implementation 
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Thank You 


