
Typed Variables

Typed Variables allow users to add more restrictions on the variables that get parsed during log

capture.

For example, a user can define that a variable named username must meet a certain format, such

as being all caps, or being of a certain length. Consider the following parser which may look

something like:

<DEVICEMESSAGES ... >

 <VERSION device="2.0"/>

 <HEADER content="%ActivIdentity: (<fooname>)<messageid>||<!payload>" ...

/>

 <HEADER content="%ActivIdentity:<messageid>||<!payload>" ... />

 <MESSAGE content="<fld1>||<saddr>||<event_time>||<fld2>||<username>|| ...

/>

 <MESSAGE content="<fld1>||<saddr>||<event_time>||<fld2>||<username>|| ...

/>

</DEVICEMESSAGES>

By this definition, any kind of text will qualify for any of the variables. Hence, username could

be "192.168.1.1" which is valid since the variable has no associated type. If we know that we

only want a pattern to match if the username variable contains only characters and numbers, then

we can define username as a typed variable. Thus our new parser may look something like:

<DEVICEMESSAGES ... >

 <VERSION device="2.0"/>

 <VARTYPE name="username" regex="[a-z0-9]+" ignorecase="true" />

 <HEADER content="%ActivIdentity: (<fooname>)<messageid>||<!payload>" ... />

 <HEADER content="%ActivIdentity:<messageid>||<!payload>" ... />

 <MESSAGE content="<fld1>||<saddr>||<event_time>||<fld2>||<username>|| ...

/>

 <MESSAGE content="<fld1>||<saddr>||<event_time>||<fld2>||<username>|| ...

/>

</DEVICEMESSAGES>

In this example we have added the following line:

 <VARTYPE name="username" regex="[a-z0-9]+" ignorecase="true" />

The name of the variable is specified with the name attribute. In this example, we use a regular

expression to define the criteria that username must meet before any pattern containing that

variable will match. Thus, if a value of "192.168.1.1" is found where the username variable

resides in the pattern, the pattern will not match.

Types of Typed Variables

regex

In the above example we used a regular expression to define the criteria for the

variable username. This functionality uses the standard regular expression syntax. Case

sensitivity can be toggled using the ignorecase attribute. This attribute is optional and regular

expressions are case sensitive by default. Hence, these two statements are identical:

<VARTYPE name="username" regex="[a-z0-9]+" ignorecase="false" />

and

<VARTYPE name="username" regex="[a-z0-9]+" />

format

The criteria for a typed variable can also be set using the format attribute. The value of the

attribute are predefined types (list below) that specify the type the variable must have for a match

to happen. For example, if we have a variable named hostip in which we only want valid IPs but

we see that some log messages are incorrectly assigning it a value of "hostname.com" we can

define hostip as a type variable:

<VARTYPE name="hostip" format="IPv4" />

In this case, only IPs of the format "XXX.XXX.XXX.XX" will match and thus the value of

"hostname.com" would not.

The valid types of formats are:

format description example

Text

Any

character

sequence

This format provided no validation and thus was

removed in 11.2.1

IPv4 ipv4 192.168.1.1

IPv6 ipv6 2607:f0d0:1002:51::4

MAC
physical

Mac

address

01:23:45:67:89:ab

UInt8
unsigned 8-

bit integer
0 to 255

UInt16
unsigned

16-bit

integer

0 to 65535

UInt32
unsigned

32-bit

integer

0 to 4294967295

UInt64
unsigned

64-bit

integer

0 to 18446744073709551615

Int16
signed 16-

bit integer
-32768 to 32767

Int32
signed 32-

bit integer
-2147483648 to 2147483647

Int64
signed 64-

bit integer

-9223372036854775808 to

9223372036854775807

Float32
decimal

numbers
2.71818

Float64
decimal

numbers
2.71818

EMail
valid email

address

(11.2.1+)

 bob@company.com

URI

universal

resource

identifier

(11.2.1+)

 http://www.google.com/path/script?query=param

Hostname

RFC-1123

compliant

hostname

(11.2.1+)

 abc.xzy.com

Multiple Types

It is possible to define multiple criteria for a typed variable. Consider a variable hostip that we

want to match an IPv4 or IPv6 IP but not a hostname. In this case we can define additional types

like such:

<VARTYPE name="hostip" format="IPv4">

 <TYPE format="IPv6" />

</VARTYPE>

In this case a log will match if it the value of hostip matches either of the two formats specified.

mailto:bob@company.com
http://www.google.com/path/script?query=param
http://abc.xzy.com/

In this way, any number of criteria can be added to a variable. We can define multiple formats,

multiple regular expressions and/or a mixture of both.

These variants of encoding are also supported to specify multiple types.

Fully nested:

<VARTYPE name="hhost">

 <TYPE format="IPv4" />

 <TYPE format="IPv6" />

</VARTYPE>

Individually defined:

<VARTYPE name="hhost" format="IPv4" />

<VARTYPE name="hhost" format="IPv6" />

Capture (11.2.1+)

The <CAPTURE ...> element is provided to capture sub-components of the match and assign

them to additional variables. The approach reflects that which is already used for Parse

Rules, except it captures to variables, not to registered meta keys. The same indexing notation is

used however the target is the variable name rather than the meta key.

Here we have an example of the primary use case, a regex with captures specified for

username and optionally the domain if it is present. The coordinating index values are used to

specify which capture index is assigned to which variable.

<VARTYPE name="huser" regex="((\w+)\\)?(\w+)">

 <CAPTURE index="0" variable="user" />

 <CAPTURE index="2" variable="domain" />

 <CAPTURE index="3" variable="username" />

</VARTYPE>

In the above example, with the input DOMAIN\user, index 0 would capture the entire input

DOMAIN\user, index 2 would capture DOMAIN and index 3 would capture user. Index 1, not

specified here for capture, would have a value DOMAIN\ and thus would be ignored.

The <CAPTURE ...> element can also be used for format Typed Variables. This provides a

mechanism to conditionally assign a variable based on the discovered (verified) type.

<VARTYPE name="hhost" format="IPv4">

 <CAPTURE index="0" variable="host.ipv4" />

</VARTYPE>

<VARTYPE name="hhost" format="IPv6">

 <CAPTURE index="0" variable="host.ipv6" />

</VARTYPE>

https://wiki.na.rsa.net/pages/viewpage.action?spaceKey=CNEX&title=Log+Decoder+Parse+Rules
https://wiki.na.rsa.net/pages/viewpage.action?spaceKey=CNEX&title=Log+Decoder+Parse+Rules

The capture index for a format Typed Variable must be zero (0) and there must only be one

capture specified. If not, all captures are ignored.

Precedence (11.2.1+)

Typed Variables support a match order to enable the application of precedence.

In the following example, if the regex was run first on user@domain.com it would match the

user portion of the email, short circuit, and not allow for the full email signature to match. The

order attribute specifies that the Email format should be executed for variable huser before the

regex format.

<VARTYPE name="huser" regex="((\w+)\\)?(\w+)" order="2">

 <CAPTURE index="2" variable="domain" />

 <CAPTURE index="3" variable="username" />

</VARTYPE>

<VARTYPE name="huser" format="Email" order="1">

 <CAPTURE index="0" variable="user.email" />

</VARTYPE>

Those Typed Variables with the order attribute absent or with a value of zero (0) are executed

after those with a defined value, which are executed lowest to highest. This behavior is intended

to match that which is used for Parse Rules.

Match Requirement (11.3+)

There are cases where a match may not be required. For example, in a tagval <MESSAGE>

(which is inherently very structured), a <VARTYPE> may be useful for parsing additional

<CAPTURE> values from a field (e.g. user and domain). However, being that the message is

very structured, it would be desirable to allow the message to match even if the data received is

unexpected, in order to consume the other highly structured fields of the message.

To this means, the attribute requireMatch is provided (when absent the default is true). It

allows <VARTYPE> to provide <CAPTURE> functionality without invalidating a message

match. It can be specified in either the <VARTYPE> or <TYPE> elements. When absent or

containing a garbage value in the <TYPE> element, the value will be inherited from the parent

<VARTYPE>.

<VARTYPE name="user" regex="((\w+)\\)?(\w+)" requireMatch="false">

 <CAPTURE index="2" variable="domain" />

 <CAPTURE index="3" variable="username" />

</VARTYPE>

When multiple format types are provided, precedence order is followed and the last format type

processed wins out on requiring a match.

mailto:user@domain.com
https://wiki.na.rsa.net/pages/viewpage.action?spaceKey=CNEX&title=Log+Decoder+Parse+Rules

Note - Typed Variable processing support for TagVal messages was added in 11.3.

FAQ

What if a variable username has a type definition in one parser and another type definition

in a second parser?

Type variables are applied on a per parser basis. Thus, variables of the same name can have

different defined types across multiple parsers and the type criteria will only apply to patterns in

that parser.

Where should <VARTYPE> elements be placed?

The <VARTYPE> elements must be a child elements of the <DEVICESMESSAGES> element.

Hence, they are siblings of the <HEADER> and <MESSAGE> elements. It does not matter if it

the <VARTYPE> elements are placed before or after its siblings. It is even possible to have

some before and after, so long as they meet the hierarchy requirements.

How do I view debug logging for typed variable evaluation?

The log level must be explicitly set for the log parsing module with LogParse=debug.

What about header priority?

It should be noted that header priority does not play a role in Typed Variables (or vice-versa).

Header priority dictates the priority in which headers should be matched if there are multiple

matches. Typed Variables are part of the final matching process which happens after priorities

ever come into play.

