NetWitness Platform
Version 12.5.0.0

Logstash and NetWitness Integration Guide

S NETWITNESS

Platform

Contact Information

NetWitness Community at https://community.netwitness.com contains a knowledge base that answers com-
mon questions and provides solutions to known problems, product documentation, community discussions,
and case management.

Trademarks

RSA and other trademarks are trademarks of RSA Security LLC or its affiliates ("RSA"). For a list of RSA
trademarks, go to https://www.rsa.com/en-us/company/rsa-trademarks. Other trademarks are trademarks
of their respective owners.

License Agreement

This software and the associated documentation are proprietary and confidential to RSA Security LLC or its
affiliates are furnished under license, and may be used and copied only in accordance with the terms of
such license and with the inclusion of the copyright notice below. This software and the documentation, and
any copies thereof, may not be provided or otherwise made available to any other person.

No title to or ownership of the software or documentation or any intellectual property rights thereto is hereby
transferred. Any unauthorized use or reproduction of this software and the documentation may be subject to
civil and/or criminal liability. This software is subject to change without notice and should not be construed
as a commitment by RSA.

It is advised not to deploy third-party repos or perform any change to the underlying NetWitness Operating
System that is not part of the supported NetWitness version. Any such change outside of the NetWitness
approved image may result in a service or functionality conflict and require a reimage of the NetWitness sys-
tem to bring NetWitness back to an optimized functional state. In the event a third-party repo is deployed, or
other non-supported change is made by the customer without NetWitness approval, the customer takes full
responsibility for any system malfunction until the issue can be remediated through troubleshooting efforts
or a reimage of the service.

Third-Party Licenses

This product may include software developed by parties other than RSA. The text of the license agreements
applicable to third-party software in this product may be viewed on the product documentation page on
NetWitness Community. By using this product, a user of this product agrees to be fully bound by terms of
the license agreements.

Note on Encryption Technologies

This product may contain encryption technology. Many countries prohibit or restrict the use, import, or
export of encryption technologies, and current use, import, and export regulations should be followed when
using, importing or exporting this product.

Distribution

Use, copying, and distribution of any RSA Security LLC or its affiliates ("RSA") software described in this
publication requires an applicable software license.

RSA believes the information in this publication is accurate as of its publication date. The information is sub-
ject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED "AS 1S." RSA MAKES NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION IN
THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

https://community.netwitness.com/
https://www.rsa.com/en-us/company/rsa-trademarks

Logstash and NetWitness Integration Guide

Miscellaneous

This product, this software, the associated documentations as well as the contents are subject to NetWit-
ness’ standard Terms and Conditions in effect as of the issuance date of this documentation and which can

be found at https://www.netwitness.com/standard-form-agreements/.

© 2024 RSA Security LLC or its affiliates. All Rights Reserved.
September, 2024

https://www.netwitness.com/standard-form-agreements/

Contents

Contents . . 4
OVeIVIOW 6
Configuration Process 8
Install Logstash 10
Install and Configure the NetWitness Codec 11
Configure Logstash Output Plugins 13
Logstash TCP Output 13
Logstash TLS OUtpUL ... 13
TLS with Log Decoder (or Virtual Log Collector) Verification 13
Configure the Event Source 15
Collect Apache File LOgS ... 15
Collect CentOS AUt LOGSo 15
Configure Parameters for Filebeat or Auditbeat ... 15
Configure Logstash Filters to Add NetWitnessMeta 18
Advanced NetWitness Configuration 19
Grok Filter PIUGin ... 19
Logstash Input and Filter plugins ... 19
Filteroutunwanted l0gs ... 19
Configure heartbeat plugin to send test logs to NetWitness ... 19
Configure logstash to persist events in case of failure (Recommended) 20
NetWitness Codec Advanced Configuration ... 20
Troubleshoot Installation Issues 21
Configure NetWitness to Collect Events 22
Linux Event Source Example ... 23
INPUL PIUGIN 23
OUtpUL PIUGIN 23
Filter Plugin .l 24
Create a Pipeline ... 25

Build Custom JSON Parser ... 26

Logstash and NetWitness Integration Guide

Sample JSON Log Received on Log Decoder ... 26
Create the JSON Parser fora LinuxDevice ... 27
Initial Parser to Match Message ID and Device Type ... 27
Map Payload Contents to Datatypes 28
Parse the Message String ... 28
Parse an Array in JSON 29
Parse a Nested JSON Object ... 30
Capture Data That Has Varying ParentKey ... 30
The Parsed Example Eventonthe Log Decoder ... 31
Example Parser Listing ... 33
Deploy JSON ParSer ... 35
Reload Parsers from REST 35
Reload Parsers from NetWitness Ul 35

Contents 5

Overview

This document is intended to provide a general overview of Logstash and NetWitness
integration. The intention is to provide enough implementation detail that users can have
comfort using and troubleshooting these integrations on their own.

To describe Logstash, here is some introductory text from Logstash reference doc-
umentation:

Logstash is an open source data collection engine with real-time pipelining
capabilities. Logstash can dynamically unify data from disparate sources and
normalize the data into destinations of your choice...

From a NetWitness standpoint, there are two basic use cases:

» For customers that have an event source for which NetWitness does not already
provide an integration, or if you want a customized integration that is different from
the one provided by NetWitness.

» For customers that already have an existing Logstash configuration, you can use
Logstash to integrate as many of your event sources as you like. Integrating your
event sources should be a matter of updating the destination for where you cur-
rently send the log information: either adding NetWitness as a destination, or chan-
ging your current output destination to NetWitness.

From latest version onwards, the Logstash server is packaged and supported along with
the NetWitness Log Collector or Virtual Log Collector (VLC) service to provide easy
access to Logstash. This is referred to as Managed Logstash and it eliminates the need
for a separate Logstash server outside of the NetWitness Platform. For more information,
see Configure Logstash Event Sources in NetWitness in the Log Collection Configuration
Guide.

The following diagram displays a view of how Logstash integrates with the NetWitness.

6 Overview

https://www.elastic.co/guide/en/logstash/current/introduction.html
https://www.elastic.co/guide/en/logstash/current/introduction.html
../../../../../../Content/3-Administration/LogCollection/CollectionProcedures/logstash.htm

Logstash and NetWitness Integration Guide

LogCollector
remote

Logstash | Logpecoder

i & D)o

Un-Managed

Overview 7

Configuration Process

The following flowchart describes the steps customers take to integrate Logstash with
NetWitness, depending on their prior familiarity with and use of Logstash.

Install and configure
Logstash

Install NetWitness codec
and configure
TGP Output plugin

—Yes

Install and/or configure

Input and Filter plugins
for the Event Source

Configure Event Source’s
NetWitness Enrichment
Identification Filter

Configure NetWiinezs
Device Parzer Mappings
for Selected Event Source

More
Ewvent Sources

Mo

For each input event source type

B Losstash
B hetWimess

Configuration Process

Logstash and NetWitness Integration Guide

The following sequence describes the data flow from an event until it becomes NetWit-
ness meta in a Log Decoder.

1. Anevent source generates events.

2. The collection plugin (for example a Beats plugin) collects events from the event
source.

Logstash processes the data from the events.

A NetWitness codec encodes the Logstash-processed data into a format that can
be consumed by NetWitness.

5. An output plugin sends the processed event data to the NetWitness.

6. A JSON parser populates meta from the processed event data.

> w

Customer Event Sources Customer Installed Logstash Node VLC Node LogDecoder Mode
Logstash LogCollector
p— I raiva_ g togColiector
Input Filter Output
Flugins Plugins Plugins
Parsing
! ECSSupported Inputs ep
H Syslog wiISON
Filtering ’ AND/OR
Enrichment

Input Threads Worker Threads ﬁ

Push Full

Device Parseraml

|

|

|

|

|

|

| i
| | =0 i | Sy 0N
| H i
| : P
|

|

|

|

|

|

m}wu

rw-<devical>id-filter conf nw-tcp-output.conf
nw-<device2>-id-filter.conf

Logstash/Pipeline Configuration

Ul Node
ISON Mapping

Existing Plugin + Configuration . New Plugin, Codec, Config

Configuration Process 9

Install Logstash

Skip this section if you already have Logstash installed and configured.

Please ensure that you follow all the security-related best practices and guidelines out-
lined in the Logstash documentation to avoid any potential security risks.

You can install either the free, open source version of Logstash (OSS) or the paid version
(Elastic).

Information on released versions of Logstash is available at Logstash Reference. Links in
the following steps show an example of installing current version of Logstash on Linux.

1. Install the service: Installing Logstash (OSS free version)

2. Based on your OS, after installation do one of the following:

e Linux: set Logstash to run as a service: Running Logstash
* Windows: see Running Logstash on Windows

3. Next, enable Logstash to start when the system boots up:

* For CentOS, see https://www.unix.com/man-page/centos/1/systemctl/
« For Debian, see https://wiki.debian.org/systemd/documentation

Those are 2 examples: adjust instructions according to your particular Operating
System.

For Generic Troubleshooting Instructions for Logstash, follow this link: Logstash
Troubleshooting

If you are using CentOS, note the following:

» Logstash logs are stored in /var/log/logstash/logstash-plain.log
« If you install logstash using rpm install, make sure it installs as logstash user and
folders get created with the same user: not the root user.

10 Install Logstash

https://www.elastic.co/guide/en/logstash/index.html
https://www.elastic.co/downloads/logstash-oss
https://www.elastic.co/guide/en/logstash/current/running-logstash.html
https://www.elastic.co/guide/en/logstash/current/running-logstash-windows.html
https://www.unix.com/man-page/centos/1/systemctl/
https://wiki.debian.org/systemd/documentation
https://www.elastic.co/guide/en/logstash/current/troubleshooting.html#ts-install
https://www.elastic.co/guide/en/logstash/current/troubleshooting.html#ts-install

Install and Configure the NetWitness
Codec

To forward Logstash events to the NetWitness in RFC-5424 format, you need to install
the NetWitness codec on your system and refer to it in your output plugin configuration.

To install or update the codec:

The following procedure can be performed on either Linux or Windows: instructions that
are specific to an OS are noted.

1. Download offline installer from NetWitness Link in the following location: NetWit-

ness Codec Installer
2. Copy the downloaded NetWitness ZIP archive to the system where Logstash runs.

3. Open a command prompt and change directory to Logstash home:
¢ On Linux: cd /usr/share/logstash.
e On Windows: cd: logstash_directory
For example: cd: c:\Logstash\
4. Stop the logstash service, if it is running.
e On Linux, run the following command:
systemctl stop logstash

* On Windows, open the Services window (you can search for it or find it from
the Start menu), then locate the Logstash service in the list and click Stop the
service.

5. Run the following command and check to see if logstash-codec-netwitness is lis-
ted.

e On Linux:
bin/logstash-plugin list
e On Windows:
\bin\logstash-plugin list
6. Ifitis listed, delete it by running the following command:
e On Linux:
bin/logstash-plugin remove logstash-codec-netwitness
¢ On Windows:
\bin\logstash-plugin remove logstash-codec-netwitess

7. Toinstall the latest package, run the following command:

11 Install and Configure the NetWitness Codec

https://community.rsa.com/docs/DOC-113777
https://community.rsa.com/docs/DOC-113777

Logstash and NetWitness Integration Guide

e On Linux:

bin/logstash-plugin install file:///<path-to-file>/logstash-codec-netwitness-off-
line-<version>.zip

e On Windows:

\bin\logstash-plugin install file:///<path-to-file>/logstash-codec-netwitness-
offline-<version>.zip

Make sure to use forward slashes (/) as a separator between Windows sub-
folders for the path to the logstash installation package.

If the codec is installed correctly, you receive a confirmation message. The following
is an example:

Installing file: /usr/share/logstash/logstash-codec-netwitness-offline-1.0.0.zip
Install successful

8. Below are default paths for logstash configurations. All output, filter, and input con-
figuration files are under these folders.

we would go over those configuration files in later sections.
e For Linux: /etc/logstash/conf.d/
» For Windows: logstash_directory/config/

For details on output files, see "Configure Logstash Output Plugins" on page 13. For
details on input and filter plugins, see "Logstash Input and Filter plugins" on
page 19.

9. Startthe logstash service:
e On Linux, run the following command:
systemctl start logstash

* On Windows, open the Services window (you can search for it or find it from
the Start menu), then locate the Logstash service in the list and click Start the
service.

Install and Configure the NetWitness Codec 12

Configure Logstash Output Plugins
Logstash TCP Output

In order to send the events from Logstash to NetWitness, we use the TCP output plugin:
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-tcp.html

The TCP output is configured with the NetWitness codec, which formats the outgoing
events to be consumable by a NetWitness Log Decoder or Virtual Log Collector (VLC).

The following is an example of a properly configured output block using TCP & the NetWit-
ness codec:

Output Block

output {

tep {
id => "nw-output-tcp"
host => "10.10.1.2" #IP or Hostname of destination Log Decoder or VLC
port => 514
codec => netwitness

Logstash TLS Output

The output block can be further configured to allow for TLS communication between Log-
stash and NetWitness. An example of a properly configured output block using TLS and
the NetWitness codec:

TLS Output Block

output {

tep {
id => "nw-output-tcp"
host => "10.10.1.2" #IP or Hostname of destination Log Decoder or VLC
port => 6514
ssl _enable => true
codec => netwitness

TLS with Log Decoder (or Virtual Log Collector) Veri-
fication

TLS can also be set up to verify the Log Decoder or Virtual Log Collector (VLC) to which it
will be communicating. To do this, the Root and Intermediate CA certificates need to be
obtained and stored in a truststore for Logstash.

13 Configure Logstash Output Plugins

https://www.elastic.co/guide/en/logstash/current/plugins-outputs-tcp.html

Logstash and NetWitness Integration Guide

1. Onthe Log Decoder (or VLC) to which you will be sending events, run the following
command:

cat /etc/pki/nw/ca/nwca-cert.pem /etc/pki/nw/ca/ssca-cert.pem > nw-truststore.pem

2. Copy the nw-truststore.pem file to the Logstash machine and store it in a known loc-
ation.

3. Create a certificate for the Logstash machine using a self-signed CA or your own
CA.

4. Store the cert and private key files in a location of your choosing.
You need to specify the locations of these files in your TLS output block.

The following code snippet shows an example of a properly configured output block using
TLS and the NetWitness codec

Output Block with Verification

output {
tep {

id => "nw-output-tcp"
host => "10.10.1.2" #IP or Hostname of destination Log Decoder or VLC
port => 6514
ssl _enable => true
ssl verify => true
ssl_cacert => "/path/to/certs/nw-truststore.pem”
ssl_key => "/path/to/certs/privkey.pem"
ssl cert => "/path/to/certs/cert.pem”
codec => netwitness

Configure Logstash Output Plugins 14

Configure the Event Source

If you have logstash already install and configured to collect events from desired event-
sources you can sKkip this section.

As a starting point, view the list of input plugins here: Input Plugins. This is not meant to
be an exhaustive list, just as a starting point to view some of the available input plugins.

The remainder of this section describes some examples.

Collect Apache File Logs

Typically, Apache logs are written to files on the disk, so to collect events from file you
could use the Filebeat plugin.

To install and configure Filebeat, see the following websites:

1. Install the Filebeat service on Linux. Refer to the following link: Filebeat Installation
2. Configure Filebeat to collect from specific logs. Refer to the following link: Filebeat

Configuration
3. Configure Filebeat to send the output to Logstash. Refer to the following link: File-

beat Logstash Output

Collect CentOS Audit Logs

To collect audit events from an operating system (for example CentOS), you could use
the Auditbeat plugin.

To install and configure Auditbeat, see the following websites:

1. Install the Auditbeat service on Linux. Refer to the following link: Auditbeat Install-
ation
2. Configure Auditbeat to collect from specific logs. Refer to the following link: Audit-

beat Configuration
3. Configure Auditbeat to send the output to Logstash. Refer to the following link: Audit-

beat Logstash Output

Configure Parameters for Filebeat or Auditbeat
For Filebeat or Auditbeat plugin, make sure to configure input and output parameters.
Modify /etc/filebeats/filebeat.yml as shown below.

To enable file collection, modify the Filebeat inputs section as shown in the following
image:

15 Configure the Event Source

https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-configuration.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-configuration.html
https://www.elastic.co/guide/en/beats/filebeat/current/logstash-output.html
https://www.elastic.co/guide/en/beats/filebeat/current/logstash-output.html
https://www.elastic.co/guide/en/beats/auditbeat/current/auditbeat-installation.html
https://www.elastic.co/guide/en/beats/auditbeat/current/auditbeat-installation.html
https://www.elastic.co/guide/en/beats/auditbeat/current/auditbeat-configuration.html
https://www.elastic.co/guide/en/beats/auditbeat/current/auditbeat-configuration.html
https://www.elastic.co/guide/en/beats/auditbeat/current/logstash-output.html
https://www.elastic.co/guide/en/beats/auditbeat/current/logstash-output.html

Logstash and NetWitness Integration Guide

Filebeat inputs
fileheat.inputs:
Each - 1s an input. Most options can set at the input level,
vou can use different inputs for various nfigurations.

Below are the input specific configuratic

log

Change to true to enable this input configuration.
enahled: true

that should bhe crawled and fetched.

73 lljlg % 1{](}
ciNprogramdataselasticsearch™Nlogs

Modify the Outputs as follows:

» Comment out settings in the Elasticsearch Output section
 Uncomment Logstash output settings and provide logstash IP and Port.

Below is an example of the sections after changes are made:

Configure the Event Source 16

Logstash and NetWitness Integration Guide

Outputs
when sending the data

output

; o connect to.
["localhost:9200"]

Optional

#username : 3 L 1"
n ., - 11

changeme

output

Optional ;
List of root certificates for = server verilfications
.certificate_authorities: Jeto /ca.pem"]

Client Certif
sl .kevy

17 Configure the Event Source

Logstash and NetWitness Integration Guide

Configure Logstash Filters to Add
NetWithess Meta

In order for an event to be processed in the Log Decoder as a specific data type, you need
to add some meta key information to the event in Logstash.

» [@metadata][nw_type] — NetWitness device parser content name
» [@metadata][nw_msgid] — NetWitness message pattern to parse message
o [@metadata][nw_source_host] — Originating event source's IP or host value

The value for nw_type must match the device parser name. It should be composed of
lowercase characters, numbers, or underscore and be less than 29 characters in length.

Optionally, you can add the following meta key:
[@metadata][nw_collection_host] — Collection system identifier (lc.cid)

By default, the NetWitness codec sends the complete JSON event as payload to the
NetWitness Log Decoder. If the NetWitness nw_type device parser type has a custom
payload format and failover payload format, the NetWitness codec plugin must be con-
figured to use them. Please see the "Configure the Event Source" on page 15 section for
more details.

The following code snippet contains an example of adding the required meta:

Code to Populate NetWitness Meta

filter {
if ![@metadata][nw_type] {
if [agent][type] == "filebeat" {
mutate {

add_field => {
"[@metadata][nw_type]" => "linux"
"[@metadata][nw_msgid]" => "LOGSTASHee1"
"[@metadata][nw_source_host]" => "%{[host][hostname]}"

Configure Logstash Filters to Add NetWitness Meta 18

Advanced NetWitness Configuration
Grok Filter Plugin

You can use Grok to parse incoming logs and extract valuable meta information. For
details, see Grok filter plugin: match. The meta extracted using grok is part of the full
event package sent to NetWitness, where it can be mapped to NetWitness meta.

Resources:

 List of Grok patterns: https://github.com/logstash-plugins/logstash-patterns-
core/tree/master/patterns
» Grok debugger: https://grokdebug.herokuapp.com/

Logstash Input and Filter plugins

See the following URLs:

 Input Plugins
 Filter Plugins

You can use the beats input plugin for Logstash to receive events from beats sources,
including Filebeat & Auditbeat: Beats Input Plugin

You can use the drop filter plugin for Logstash to filter out unwanted logs being passed
through Logstash: Drop Filter Plugin

Filter out unwanted logs
You can also filter out unwanted logs using the drop-event processor for Filebeat & Audit-
beat.

» Examples for Filebeat:

Filebeat Reference: Filtering and Enhancing Data

Filebeat Reference: Drop Events

o Examples for Auditbeat:

Auditbeat Reference: Filter and Enhance the Exported Data

Auditbeat Reference: Drop Events

Configure heartbeat plugin to send test logs to NetWit-
ness

The Heartbeat plugin can be used to send a test message to verify connectivity between

logstash and NetWitness. For details, see the Heartbeat Plugin configuration guide:
Heartbeat Input Plugin.

19 Advanced NetWitness Configuration

https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html#plugins-filters-grok-match
https://github.com/logstash-plugins/logstash-patterns-core/tree/master/patterns
https://github.com/logstash-plugins/logstash-patterns-core/tree/master/patterns
https://grokdebug.herokuapp.com/
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/filter-plugins.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-beats.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-drop.html
https://www.elastic.co/guide/en/beats/filebeat/current/filtering-and-enhancing-data.html
https://www.elastic.co/guide/en/beats/filebeat/current/drop-event.html
https://www.elastic.co/guide/en/beats/auditbeat/current/filtering-and-enhancing-data.html
https://www.elastic.co/guide/en/beats/auditbeat/current/drop-event.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-heartbeat.html

Logstash and NetWitness Integration Guide

Example of Heartbeat Plugin

heartbeat {
id => "sample_plugin"
#interval => 60
count => 3
message => "sequence"
add_field => {
"[@metadata][nw_type]" => "logstash_testlog"
"msg" => "This is test log from some eventsource"

}

Configure logstash to persist events in case of failure
(Recommended)

By default, Logstash uses in-memory queues to buffer events. The size of these in-
memory queues is not configurable. If there is a machine failure, or if the service is forcibly
stopped, the contents of these queues are lost. To protect against data loss in these situ-
ations, Logstash supports persistent queues that are stored on disk and thus can survive
failures. For details, see Logstash Persistent Queues.

NetWitness Codec Advanced Configuration

By default, the NetWitness codec sends the complete JSON event as payload to the
NetWitness Log Decoder. If the NetWitness nw_type device parser type has a custom
payload format, you must configure the NetWitness codec plugin to recognize this custom
format.

The payload_format and payload_format_failover mappings use nw_type as the key. The
payload_format mapping is searched first for the device type (nw_type). If the device type
is not set, or no format is specified for nw_type, or the system fails to make all configured
variable substitutions, the complete JSON output is used as the payload. If the primary
format from the payload_format mapping fails, the payload_format_failover mapping is
tried. If that also fails, the complete JSON output is used as the payload. You can use The
format can use Logstash event field syntax for this custom configuration.

The following code snippet shows example of adding meta with custom payload formats.

Add meta with custom payload formats

output {
if [@metadata][nw_type] { # Only targeted NetWitness items

tep {

Advanced NetWitness Configuration 20

https://www.elastic.co/guide/en/logstash/current/persistent-queues.html

Logstash and NetWitness Integration Guide

id => "netwitness-tcp-output-conf-output”
host => "127.0.0.1"
port => 514
ssl_enable => false
codec => netwitness {
Payload format mapping by nw_type.
If nw_type is absent or formatting fails,
JSON event is used as the payload
payload_format => {
"apache" => "%APACHE-4-%{verb}: %{message}"
}

Failover format, if above format fails

If nw_type is absent or formatting fails,

JSON event is used as the payload

payload_format_failover => {
"apache" => "%APACHE-4: %{message}" # When verb is missing
}

}

}
}

Troubleshoot Installation Issues

If you encounter any issues during installation of Logstash, see Logstash Installation and
Setup.

21 Advanced NetWitness Configuration

https://www.elastic.co/guide/en/logstash/current/troubleshooting.html#ts-install
https://www.elastic.co/guide/en/logstash/current/troubleshooting.html#ts-install

Logstash and NetWitness Integration Guide

Configure NetWitness to Collect Events

You need to start capture on the Log Decoder to which your are sending your Logstash
data.

To start or restart network capture on a Log Decoder:

1. Log in to NetWitness and click the ADMIN icon > Services.
The Services view is displayed.
2. SelectaLog Decoder service.

3. Under o (actions), select View > System.

. =) Start Capture
4. In the toolbar, click

™ stop Capture)

If the toolbar is displaying the Stop Capture (
already been started.

icon, then capture has

By default, Log Decoders support events that are up to 32 KB in size. If your events are
getting truncated on the Log Decoder, use the following procedure to change the event
size:

1. Change LogDecoder REST config at http://[LogDecoder_IP:50102/-
decoder/config, where LogDecoder_IP is the IP address of your Log Decoder.

2. Set pool.packet.page.size to 64 KB.

3. Restart the Log Decoder: this is required after you change the pool.packet.page
value.

If you are collecting events larger than 64 KB in size, follow instructions above in the "Fil-
ter out unwanted logs" on page 19 section. You can drop unwanted logs or fields for a spe-
cific event source, to reduce the size of the incoming data.

Configure NetWitness to Collect Events 22

Logstash and NetWitness Integration Guide

Linux Event Source Example

This section shows sample input, filters and output configuration to collect system and
audit events from CentOS.

Input Plugin

An input plugin enables a specific source of events to be read by Logstash. The following
code represents an example input plugin.

input-beats.conf

Below input block collects events using beats plugins (e.g filebeats, auditbeats)
Skip this block if it's already defined in another pipeline.

input {
beats {
port => 5044
}
}

Make sure that port 5044 is open on the Logstash machine. As an example, if Logstash is
on a CentOS system, run the following commands to open port 5044

firewall-cmd --add-port=5044/tcp
firewall-cmd --add-port=5044/tcp --permanent
firewall-cmd --reload

Output Plugin

An output plugin sends event data to a particular destination. Outputs are the final stage in
the event pipeline.

output-netwitness-tcp.conf

Below is tcp output plugin with netwitness codec to tranform events in syslog and send
it to LogDecoder
Only one of these configurations can be within the same pipeline.
output {
#if [@metadata][nw_type] { # Only targeted Netwitness items
tep {

id => "netwitness-tcp-output-conf-output”

host => "10.10.100.100" ## LogDecoder IP

port => 514

ssl_enable => false

#ssl_verify => true

#ssl cacert => "/path/to/certs/nw-truststore.pem”

#ssl key => "/path/to/certs/privkey.pem"

#ssl _cert => "/path/to/certs/cert.pem"

23 Linux Event Source Example

Logstash and NetWitness Integration Guide

codec => netwitness {
Payload format mapping by nw_type.
If nw_type is absent or formatting fails, JSON event is used as the payload
payload_format => {
"apache" => "%APACHE-4-%{verb}: %{message}"
}
Failover format, if above format fails
If nw_type is absent or formatting fails, JSON event is used as the payload
payload_format_failover => {
"apache" => "%APACHE-4: %{message}" # When verb is missing
}

}

¥
#}

}

Filter Plugin

A filter plugin performs intermediary processing on an event. Below is a filter plugin con-
figuration for system events collected from linux using the Filebeat plugin.

linux-system.conf

Filters are often applied conditionally depending on the characteristics of the events.
Requires these additional configurations within the same pipeline:

input-beats.conf

output-netwitness-tcp.conf

filter {
if ![@metadata][nw_type] {
if [ecs][version] and [host][hostname] and [agent][type] == "filebeat" {
if [event][module] == "system" {
mutate {
add_field => {
"[@metadata][nw_type]" => "linux"
"[@metadata][nw_msgid]" => "LOGSTASHee1"
"[@metadata][nw_source_host]" => "%{[host][hostname]}"

Below is filter plugin configuration for audit events collected from linux using the Auditbeat
plugin.

linux-audit.conf

filter {
if ![@metadata][nw_type] { # Update Once

Linux Event Source Example 24

Logstash and NetWitness Integration Guide

if [ecs][version] and [host][hostname] and [agent][type] == "auditbeat" {
if [event][module] == "audit" {
mutate {

add_field => {
"[@metadata] [nw_type]" => "linux"
"[@metadata][nw_msgid]" => "LOGSTASHee@2"
"[@metadata] [nw_source_host]" => "%{[host][hostname]}"

Create a Pipeline

It is recommended to have one pipeline for each input type. For example, all beats col-
lection should be in the same pipeline. To run collection as separate pipeline, create a dir-
ectory and add above input, filters, and output configuration files to it.

Example Pipeline for Beats

/etc/logstash/pipelinel/
/etc/logstash/pipelinel/input-beats.conf
/etc/logstash/pipelinel/output-netwitness-tcp.conf
/etc/logstash/pipelinel/linux-system.conf
/etc/logstash/pipelinel/linux-audit.conf

Modify /etc/logstash/pipeline.yml and add the following entries:

Add to pipeline.yml

- pipeline.id: my-sample-pipeline-1
path.config: "/etc/logstash/pipelinel/*.conf"

25 Linux Event Source Example

Build Custom JSON Parser

This section is intended for advanced programmers who want to build their own
JSON parser. It describes how to build a Logstash parser for a sample device. We use the
Linux device as an example throughout.

This chapter is optional: you do not need to build a custom JSON parser from scratch to
input logs from Logstash to NetWitness.

Major sections in this document:

» Configure afilter by defining several required pieces of metadata.

» Examine a sample log message from the Linux device

» Walk through creating the parser, based on the sample log message

» View the parsed meta from the sample log message, as it appears on the Log
Decoder

Sample JSON Log Received on Log Decoder

Let's examine a sample log and discuss its contents.

<13>1 - Centos7 linux - LOGSTASHO001 [lc@36807 Ic.ctime="1585886465037" Ic.-
cid="Centos7" Ic.ctype="logstash"] {"message": "msg='op=PAM:accounting grant-
ors=pam_access,pam_unix,pam_localuser acct=root exe=/usr/sbin/crond hosthname="?
addr=? terminal=cron res=success", "user":{ "email":"john.deaux@test.com", "user-
name":"CORP\\deauxj" }, "host": { "name": "Centos7", "hostname": "Centos7", "con-
tainerized": false, "architecture": "x86_64", "id":
"d1059ac783b24eb7bbde70a41fa572c9", "os": { "name": "CentOS Linux", "kernel":
"3.10.0-1062.el7.x86_64", "version": "7 (Core)", "codename": "Core", "platform": "centos",
"family": "redhat" } }, "@timestamp": "2020-04-03T04:01:05.037Z", "files": ["test1.log",
"test2.log", "test3.log"],"machine_details" : {"1" : { "hostname" : "USXXLinux" }, "2" : {

"hostname" : "USXXWindows" }}}
The first portion of the log is the RFC-5424 header:

<13>1 - Centos7 linux - LOGSTASHO001 [Ic@36807 Ic.ctime="1585886465037" Ic.-
cid="Centos7" Ic.ctype="logstash"]

This header contains the information that we used in setting our fields above:

* nw_source_host: Centos7 (Hostname)
e nw_type: linux (Device Type)
e nw_msgid: LOGSTASHO001 (Message ID)

The remainder of the log is the JSON Payload.

JSON Payload

{

Build Custom JSON Parser 26

Logstash and NetWitness Integration Guide

"message": "msg='op=PAM:accounting grantors=pam_access,pam_unix,pam_localuser acct-
t=root exe=/usr/sbin/crond hostname=? addr=? terminal=cron res=success'",

"user": {
"email": "john.deaux@test.com",
"username": "CORP\\deauxj"

¥

"host": {
"name": "Centos7",
"hostname": "Centos7",
"containerized": false,
"architecture": "x86_64",
"id": "d1@59ac783b24eb7bbde70a41fa572c9",
"os": {
"name": "CentOS Linux",
"kernel": "3.10.0-1062.e17.x86_64",
"version": "7 (Core)",
"codename": "Core",
"platform”: "centos",
"family": "redhat"

¥

"@timestamp": "2020-04-03T04:01:05.037Z",

"files": [
"testl.log",
"test2.log",
"test3.log"

1

"machine_details": {
"1": { "hostname": "USXXLinux"},
"2": { "hostname": "USXXWindows"}

Create the JSON Parser for a Linux Device

Now that we have the sample log from the Linux device, we can construct a filter plugin for
this device.

Initial Parser to Match Message ID and Device Type

The parser name should match the device type. We call this initial parser v20_linuxms-
g.xml, which matches the message ID from the event. We set content to a variable, log-
stash_json_payload, which represents the JSON payload. We will parse the payload later
in the process.

27 Build Custom JSON Parser

Logstash and NetWitness Integration Guide

Message ID and Device Type Parsing

<?xml version="1.0" encoding="IS0-8859-1"?>
<DEVICEMESSAGES

name="1inux"

displayname="Linux"

group="Unix">

<VERSION device="2.0"/>

<MESSAGE
id1="LOGSTASHeo1"
id2="LOGSTASHeo1"
content="8&1lt;logstash_json_payload>" />
<!-- Additional logic to parse JSON payload -->

</DEVICEMESSAGES>

Map Payload Contents to Datatypes

We create datatypes to map each element from the payload to meta that can be saved to
the NetWitness database.

The entire payload is assigned to the FileBeatsEvent datatype.

<VARTYPE name="logstash_json_payload" dataType="FileBeatsEvent"/>

The timestamp is parsed an assigned to the InternetTime datatype.

<DataType name="InternetTime"dateTime="%W-%M-%DT%H:%T:%S.%V%E" />
Parse the Message String

Using the parser above, we parse (using the FineParse type defined above) the message
string from the log file.

"message": "msg="op=PAM:accounting grantors=pam_access,pam_unix,pam_localuser
acct=\"root\"
exe=\"/usr/sbin/crond\" hostname="? addr="? terminal=cron res=success"

The following code extracts the values from the string and saves them to meta keys:

e op is saved to operation.id

e acctis saved to service.account
e resis saved toresult

e exe is saved to process.src

Note that he search flag is set to true to parse key/value pars regardless of their order in
the string.

Extract Values: save to Meta

<DataType name="TagValParse" regex="(?: |*)(?:exe=(\S+)|acct=(\S+)|res=(\S+)|op=(\S+))"

Build Custom JSON Parser 28

Logstash and NetWitness Integration Guide

search="true">
<Capture index="1" meta="process.src" />
<Capture index="2" meta="service.account" />
<Capture index="3" meta="result" />
<Capture index="4" meta="operation.id" />
</DataType>

The following code:

» Assigns the whole key as message and maps it to the FineParse type.
» The FineParse type is then mapped to TagValParse type.

<DataType name="FineParse" regex="msg='(.*)"'">
<Capture index="1" type="TagValParse" />
</DataType>

<DataType name="FileBeatsEvent" type="ElasticCommonSchemaSubset">
<Capture key="/message" type="FineParse" meta="message"/>
<Capture key="/user/email" meta="email" />
<Capture key="/user/username" type="DomainUser"/>
<Capture key="/files/" meta="sourcefile" />
<Capture key="/machine_details//hostname” meta="host.dst"/>
</DataType>

Give the previous string and the code above, the output on the Log Decoder is as follows:

message: msg='op=PAM:accounting grantors=pam_access,pam_unix,pam_localuser
acct=root exe=/usr/sbin/crond
hostname=7? addr=? terminal=cron res=success'
service.account: root
process.src: /usr/sbin/crond
result: success
operation.id: PAM:accounting

Parse an Array in JSON

In our sample JSON log file from earlier, one section contained an array object:
"files": [
"test1.log",

"test2.log",
"test3.log"

]

To fetch all the values of an array, you need to define a capture key enclosed in forward
slashes to fetch all values, for example files/.

<DataType name="FileBeatsEvent" type="ElasticCommonSchemaSubset">
<Capture key="/files/" meta="sourcefile" />

29 Build Custom JSON Parser

Logstash and NetWitness Integration Guide

</DataType>

Using the code above on the sample array, the following would be the output on the Log
Decoder:

sourcefile: test1.log
sourcefile: test2.log
sourcefile: test3.log

Parse a Nested JSON Object

Let's look at an example nested object from our sample log file from earlier:

"host": {
"name": "Centos7",
"hostname": "Centos7",
"containerized": false,
"architecture": "x86_64",
"id": "d1059ac783b24eb7bbde70a41fa572c9",
"os": {
"name": "CentOS Linux",
"kernel": "3.10.0-1062.el7.x86_64",
"version": "7 (Core)",
"codename": "Core",
"platform": "centos",
"family": "redhat"

}
}

To fetch nested values, you need to build a path that contains the keys from each nested
level. For example, to fetch the OS name from our example, you use the following code:

<DataType name="ElasticCommonSchemaSubset">
<Capture key="/host/os/name"> meta="0S" />
</DataType>

Using the code above on the sample nested object, the following would be the output on
the Log Decoder:

OS: CentOS Linux
Capture Data That Has Varying Parent Key

When capturing structured data types like JSON, instead of a numbered capture index,
you can provide a field name path that uses the key attribute. For example, assume we
want to capture the hostname from machine_details and ignore the indexed key:

Build Custom JSON Parser 30

Logstash and NetWitness Integration Guide

"machine_details": {
"1": {"hostname": "USXXLinux"},
"2": { "hostname": "USXXWindows"}

}

To fetch the required values, which have a varying parent key name, we leave the parent
key empty in the path:

<DataType name="FileBeatsEvent" type="ElasticCommonSchemaSubset">
<Capture key="/machine_details//hostname"> meta="host.dst" />
</DataType>

Using the code above on the sample, the following would be the output on the Log
Decoder:

host.dst: USXXLinux
host.dst: USXXWindows
The Parsed Example Event on the Log Decoder

Assuming the sample log message from the beginning of this document, and using the
parser that we have built, the image below details the event as it would appear on the Log
Decoder.

31 Build Custom JSON Parser

Logstash and NetWitness Integration Guide

<13>1 - Centos7 linux - LOGSTASHe®1l [lc@36807 lc.ctime="1585886465037" lc.cid="Centos7" lc.ctype:"logstash"]'
hostname=? addr=? terminal=cron res=success'", "user":{ "email":"john.deaux@test.com"”, "username":"CORP\\dea
"d1059ac783b24eb7bbde70a41fa572c9", "os": { "name": "CentOS Linux", "kernel": "3.10.0-1062.el7.x86 64", "ver
03T04:01:05.037Z2", "files": ["testl.log", "test2.log", "test3.log"],"machine details" : { "1" : { "hostnam

View Apr22 2020 16:37:09 864 bytes sessionid: 1 Raw N\
Ic.cid: Centos?

device.host:

forward.ip: 127.0.0.1

medium: Logs

device.type:

device.class: Unix |
message: msg="op=PAM:accounting grantors=pam_access,pam_L
operation.id: PAM:accounting

service.account: root

process.src: /usr/sbin/crond

result: success

email: john.deaux@test.com

user: CORP\deaux;j

domain: CORP

username: deauxj

alias.host: Centos7

hardware.id: d1059ac783b24eb7bbde70a41fa572c9

OS: CentOS Linux

Ic.ctime: 1585886465

sourcefile: test1.log

sourcefile: test2.log

sourcefile: test3.log

host.dst: USXXLinux

host.dst: USXXWindows

msg.id: LOGSTASHO001

msg.vid: LOGSTASHOO1

device.disc: M
device.disc.type:

kig thread: 0

The following representation of the sample log has meta values highlighted.

<13>1 - Centos7 linux - LOGSTASHO001 [Ic@36807 Ic.ctime="1585886465037" Ic.-
cid="Centos7" Ic.ctype="logstash"] {"message": "msg="op=PAM:accounting grant-
ors=pam_access,pam_unix,pam_localuser acct=root exe=/usr/sbin/crond
hostname=? addr=? terminal=cron res=success", "user":{ "email":"-

john.deaux@test.com”, "username":"CORP\\deauxj" }, "host": { "name": "Centos7",
"hostname": "Centos7", "containerized": false, "architecture": "x86_64", "id":
"d1059ac783b24eb7bbde70a41fa572c9", "os": { "name": "CentOS Linux", "kernel":
"3.10.0-1062.el7.x86_64", "version": "7 (Core)", "codename": "Core", "platform": "centos",
"family": "redhat" } }, "@timestamp": "2020-04-03T04:01:05.037Z", "files": ["test1.log",
"test2.log"”, "test3.log"],"machine_details" : {"1" : { "hostname" : "USXXLinux" }, "2":
{"hostname" : "USXXWindows" }} }

Build Custom JSON Parser 32

Logstash and NetWitness Integration Guide

Example Parser Listing

The following code represents the complete parser, including the components we built
earlier in this document.

Example Parser Listing

<?xml version="1.0" encoding="IS0-8859-1"?>

<DEVICEMESSAGES
name="1inux"
displayname="Linux"
group="Unix">

<VERSION

<MESSAGE

device="2.0" />

id1="LOGSTASHe@1"
id2="LOGSTASHe01"

content="&1t;logstash_json_payload>" />
<VARTYPE name="logstash_json_payload" dataType=FileBeatsEvent"/>

<DataType name="InternetTime" dateTime="7%W-%M-%DT%H:%T :%S.%V%E" />

<DataType name="CollectionTime" type="InternetTime" meta="lc.ctime"/>

<DataType name="ElasticCommonSchemaSubset" format="JSON">
type="CollectionTime" />
meta="alias.host" />
meta="hardware.id" />

<Capture
<Capture
<Capture
<Capture
</DataType>

<DataType name="DomainUser" regex="(?:(\w+)\\)?(\w+)">

<Capture
<Capture
<Capture
</DataType>

key="/@timestamp">
key="/host/hostname">
key="/host/id">
key="/host/os/name">

meta="0S" />

index="0" meta="user" />

index="1

meta="domain" />

index="2" meta="username" />

<DataType name="TagValParse" regex="(?: |~)(?:exe=(\S+)|acct=(\S+)|res=(\S+)|op=(\S+))"
search="true">
index="1" meta="process.src" />
index="2" meta="service.account"” />
index="3" meta="result" />
index="4" meta="operation.id" />

<Capture
<Capture
<Capture
<Capture
</DataType>

<DataType name="FineParse" regex="msg='(.*)"'">
<Capture index="1" type="TagValParse" />

</DataType>

<DataType name="FileBeatsEvent" type="ElasticCommonSchemaSubset">
key="/message" type="FineParse" meta="message"/>

<Capture
<Capture
<Capture
<Capture
<Capture

key="/user/email” meta="email" />

key="/user/username" type="DomainUser"/>

key="/files/" meta="sourcefile" />

key="/machine_details//hostname" meta="host.dst" />

33

Build Custom JSON Parser

Logstash and NetWitness Integration Guide

</DataType>

</DEVICEMESSAGES>

Build Custom JSON Parser

34

Logstash and NetWitness Integration Guide

Deploy JSON parser

After you have built or changed a JSON parser, you need to upload it to the NetWitness
Log Decoder.

1. SSH to the Log Decoder system.
2. Copy the custom parser file to the following folder:
/etc/netwitness/ng/envision/etc/devices/eventsource

where eventsource is the name of the event source. You may need to create the
folder if it doesn't already exist.

For example, we need to create linux folder under /etc/net-
witness/ng/envision/etc/devices directory and copy the v20_linuxmsg.xml parser
file to /etc/netwitness/ng/envision/etc/devices/linux directory.

3. To getthe new parser loaded into memory, you need to reload the parsers on the
Log Decoder.

Reload Parsers from REST

From a browser, run the REST reload command by entering the following URL.:
http://<logdecoder_ip>:50102/decoder/parsers?msg=reload

For example, if your Log Decoder IP address is 10.10.100.101, use the following string:
http://10.10.100.101:50102/decoder/parsers?msg=reload

If the call is successful, you should see a REST response, "The parsers have been
reloaded."

Reload Parsers from NetWitness Ul

You can also reload your parsers from the Ul as follows.

1. In the NetWitness Ul, navigate to (Admin) > Services.

The Services view is displayed.

2. Select the Log Decoder to which your want to reload the parsers, and click View

> Explore.
3. Inthe left pane, navigate to decoder > parsers.
4. Right-click parsers and select Properties.

5. From the drop-down menu in the Properties panel, select reload.

35 Deploy JSON parser

Logstash and NetWitness Integration Guide

METWITNESS

HOS5TS SERVICES EVENMT 5S5OURCES EMDPOIMNT 5SOURCES HEALTH &

-+ Change Service | - Log Decoder Explore (=

= o . ' fdecoder/parsers endpointoghybr
Z endpointloghybrid - L...

config
B [0l endpointloghybrid - Log Decoder (LOG... -

feeds

[collections

B[] connections -

MiMart|es TMr
B[] datakass Prupk_r._L_:u O
B decoder

E[] config
Reloads all meta parsers
B[] devices

security.roles: parsers.manags

[s=tats

B[deviceappliance
svieeaR - Response Output

B[Jindex

wm =

6. Click Send.

Deploy JSON parser 36

	Contents
	Overview
	Configuration Process
	Install Logstash
	Install and Configure the NetWitness Codec
	Configure Logstash Output Plugins
	Logstash TCP Output
	Logstash TLS Output
	TLS with Log Decoder (or Virtual Log Collector) Verification

	Configure the Event Source
	Collect Apache File Logs
	Collect CentOS Audit Logs
	Configure Parameters for Filebeat or Auditbeat

	Configure Logstash Filters to Add NetWitness Meta
	Advanced NetWitness Configuration
	Grok Filter Plugin
	Logstash Input and Filter plugins
	Filter out unwanted logs
	Configure heartbeat plugin to send test logs to NetWitness
	Configure logstash to persist events in case of failure (Recommended)
	NetWitness Codec Advanced Configuration
	Troubleshoot Installation Issues

	Configure NetWitness to Collect Events
	Linux Event Source Example
	Input Plugin
	Output Plugin
	Filter Plugin
	Create a Pipeline

	Build Custom JSON Parser
	Sample JSON Log Received on Log Decoder
	Create the JSON Parser for a Linux Device
	Initial Parser to Match Message ID and Device Type
	Map Payload Contents to Datatypes
	Parse the Message String
	Parse an Array in JSON
	Parse a Nested JSON Object
	Capture Data That Has Varying Parent Key
	The Parsed Example Event on the Log Decoder
	Example Parser Listing

	Deploy JSON parser
	Reload Parsers from REST
	Reload Parsers from NetWitness UI

