
Core Database Tuning Guide
for Version 10.6.5

Contact Information
RSA Link at https://community.rsa.com contains a knowledgebase that answers common
questions and provides solutions to known problems, product documentation, community
discussions, and case management.

Trademarks
For a list of RSA trademarks, go to www.emc.com/legal/emc-corporation-trademarks.htm#rsa.

License Agreement
This software and the associated documentation are proprietary and confidential to EMC, are
furnished under license, and may be used and copied only in accordance with the terms of such
license and with the inclusion of the copyright notice below. This software and the
documentation, and any copies thereof, may not be provided or otherwise made available to any
other person.

No title to or ownership of the software or documentation or any intellectual property rights
thereto is hereby transferred. Any unauthorized use or reproduction of this software and the
documentation may be subject to civil and/or criminal liability.

This software is subject to change without notice and should not be construed as a commitment
by EMC.

Third-Party Licenses
This product may include software developed by parties other than RSA. The text of the license
agreements applicable to third-party software in this product may be viewed on the product
documentation page on RSA Link. By using this product, a user of this product agrees to be fully
bound by terms of the license agreements.

Note on Encryption Technologies
This product may contain encryption technology. Many countries prohibit or restrict the use,
import, or export of encryption technologies, and current use, import, and export regulations
should be followed when using, importing or exporting this product.

Distribution
EMC believes the information in this publication is accurate as of its publication date. The
information is subject to change without notice.

October 2017

https://community.rsa.com/
http://www.emc.com/legal/emc-corporation-trademarks.htm#rsa

Contents

Security Analytics Core Database Introduction 7
Security Analytics Products Covered by this Guide 7

Frequently-Used Terms 7

Security Analytics Core Database History 8

Core Database Strengths and Weaknesses 9

Basic Database Configuration 11
Find Help within the Core Service 11

Packet, Meta, and Session Storage 11

Index Storage 11

Tiered Database Storage 12
Archiver 13

Manifests 14
Search Historical Manifests 15

Advanced Database Configuration 17

Database Configuration Nodes 18
packet.dir, meta.dir, session.dir 18

packet.dir.warm, meta.dir.warm, session.dir.warm 19

packet.dir.cold, meta.dir.cold, session.dir.cold 19

packet.file.size, meta.file.size, session.file.size 20

packet.files, meta.files, session.files 20

packet.free.space.min, meta.free.space.min, session.free.space.min 21

packet.index.fidelity, meta.index.fidelity 21

packet.integrity.flush, meta.integrity.flush, session.integrity.flush 21

packet.write.block.size, meta.write.block.size, session.write.block.size 21

packet.compression, meta.compression 22

packet.compression.level, meta.compression.level 22

hash.algorithm 22

hash.databases 22

hash.dir 23

Core Database Tuning Guide

Index Configuration Nodes 24
index.dir 24

index.dir.warm 24

index.dir.cold 24

index.slices.open 24

page.compression 25

save.session.count 25

SDK Configuration Nodes 26
max.concurrent.queries 26

max.pending.queries 26

cache.window.minutes 26

max.where.clause.cache 27

query.level.1.minutes, query.level.2.minutes, query.level.3.minutes 27

query.timeout 27

max.where.clause.sessions 27

max.query.groups 28

packet.read.throttle 28

cache.dir, cache.size 28

parallel.values 28

parallel.query 29

Per-User Configuration Nodes 30
query.prefix 30

query.level 30

query.timeout 30

session.threshold 30

Scheduler 31
Example 31

Rollover 33
Synchronous Rollover 33

Asynchronous Rollover 33

Example 34

Queries 35
Query Syntax 35

4

Core Database Tuning Guide

Where Clauses 37

Query Operators 37

Text Values 39

IP Addresses 39

MAC Addresses 39

Date and Time Expressions 39

Special Range Values 39

Group By Clause (since 10.5) 40

Order By Clause (since 10.5) 41

Values call 42

Parameters 43

Values Flags 45

Values Call Example 46

Msearch call 47

Msearch Flags 48

Msearch Index Search Mode 48

Msearch Tips 48

Stored Procedures 49

Use of Quotes in Query Syntax 49

Index Customization 50
Index Configuration File Locations 50

Index configuration entries 50

Meta names 51

Data Types 51

Index Levels 52

Value Max 53

maxLength 54

Optimization Techniques 55
Thresholds 55

Complex Where Clauses 55

ANDs and ORs 56

Use Case: Match a Large Subnet 56

Use Case: Substring Matching 57

Index Saves 58

Affects of Increasing the Save Interval 59

5

Core Database Tuning Guide

Affects of Decreasing the Save Interval 59

Working with Value Max 59

Parallelize Workloads 59

Index Rebuild 60

Scaling Retention 60

Increasing Packet and Meta Retention 60

Increasing Index Retention 61

Scaling Horizontally 61

Grouping Workloads 61

Cache Window 62

Time Limits 63

Appendix A: Statistics 64
Statistics in /database/stats 64

Statistics in /index/stats 65

Statistics in /sdk/stats 66

Per-query statistics 66

Appendix B: Index Inspect 68
Parameters 68

Response 68

Slice Summary 68

Per-Index Summary 68

Slice Summary Footer 69

6

Core Database Tuning Guide

Security Analytics Core Database Introduction
This topic provides an overview of the Security Analytics Core database. The Security Analytics
Core services contain a proprietary database developed specifically for use within the Security
Analytics suite of products. It bears little resemblance to traditional relational databases, and is
not based on any off-the-shelf database technology. As such, many users find that there is a
steep learning curve to understanding how the Core database works, and how to make best use
of it. The purpose of this guide is to help Security Analytics users understand the database and
use it to its fullest potential.

As a System Administrator, you can use this information to help plan your Security Analytics
deployment, and to tune it for best performance. As an Analyst, you can use this guide to
structure your analysis in ways that will return reports faster. As a Content Developer, you can
use this guide to help write content that will be processed efficiently by the database system.

Security Analytics Products Covered by this Guide
This guide covers the capabilities of Security Analytics 10.6. The following Security Analytics
components contain the Core database:

l Concentrator

l Archiver

l Decoder

l Log Decoder

l Workbench

Frequently-Used Terms
Definitions for terms that are used throughout this document are presented here. The terms are
listed in the order in which they enter the Security Analytics system:

l Packet DB: The packet database contains the raw captured data. On a Decoder, the packet
database contains packets as captured from the network. Log Decoders use the packet
database to store raw logs. The raw data stored in the packet database is accessible by a
Packet ID, however, this ID is typically never visible to the end user.

l Packet ID: A number used to uniquely identify a packet or log in a packet database.

7 Security Analytics Core Database Introduction

Core Database Tuning Guide

l Meta DB: The meta database contains items of information that are extracted by a Decoder
or Log Decoder from the raw data stream. Parsers, rules, or feeds can generate meta items.

l Meta ID: A number used to uniquely identify a meta item in the meta database.

l Meta Key: A name used to classify the type of each meta item. Common meta keys include
ip.src, time, or service.

l Meta Value: Each meta item contains a value. The value is what each parser, feed, or rule
generates.

l Session DB: The session database contains information that ties the packet and meta items
together into sessions.

l Session: On a packet Decoder, a session represents a single logical network stream. For
example, a TCP/IP connection is one session. On a Log Decoder, each log event is one
session. Each session contains the references to all the Packet IDs and Meta IDs that refer to
the session.

l Session ID: A number used to uniquely identify sessions in the Session DB.

l Index: The index is a collection of files that provides a way to look up Session IDs using
Meta Values.

l Core Database: This refers to the combination of the Packet, Meta, Session, and Index.

For syntax definitions, this document uses EBNF grammar definitions.

Security Analytics Core Database History
NetWitness developed the Security Analytics Core database for use in packet capture systems.
Early in the history of NetWitness, developers identified that existing database technologies
would not be able to keep up with the high ingest rate inherent in full packet capture.
Contemporary database technologies were not anywhere close to being able to keep up with
capturing the number of sessions received every second, much less sorting every packet.
Likewise, the volume of data meant that packet storage would need to be discarded and reused
just as quickly as it was consumed. This was also a weakness of databases at the time. Thus,
NetWitness created a database consisting of the packet, session, and meta databases.

In order to provide the analytical capabilities of NetWitness Investigator, a meta index was
added to the NetWitness database. The index shared the same design goals as the original
databases. It was designed to sustain a very high insert rate into a high number of very large
indices.

Security Analytics Core Database Introduction 8

https://en.wikipedia.org/wiki/Extended_Backus�Naur_Form

Core Database Tuning Guide

The index has evolved considerably over the years. Early versions of the index were only
capable of providing summary estimates about how many unique meta values were present in the
meta database. Other versions have had great challenges in meeting acceptable query
performance. For example, NetWitness 9.0 more frequently measured report times in minutes
rather than seconds. The current version of the index is derived from the NetWitness 9.0 index,
but has evolved considerably in order to meet performance expectations and to add new features.

Core Database Strengths and Weaknesses
Strengths:

l High sustained insert rates, without needing down time for bulk inserts.

l Decent query performance simultaneous with high insert rates.

l Automatic cleanup and rollover of old data with minimal fragmentation.

l Extremely high number of meta value indices: more than 100 enabled by default on a
Concentrator.

l Ability to scale to Petabyte database sizes and Terabyte index sizes within a single node.

l Using meta key-value pairs, it is very flexible for storing arbitrary meta items within a
session. Thus a session can be used to represent nearly any kind of data record.

Weaknesses:

l The query functionality is limited and low level.

l The packet, meta, and session DB schema is fixed, and all customization is done through
custom meta keys and values.

l The database provides no transaction atomicity guarantees as you might expect to find in a
SQL database.

9 Security Analytics Core Database Introduction

Core Database Tuning Guide

Basic Database Configuration
This topic covers basic database configuration settings of Security Analytics Core services. For
information on how to configure the Core services by editing configuration files, see Service
Configuration Settings in the Host and Services Getting Started Guide.

This document assumes that the reader has some familiarity with adjusting the configuration of
a Security Analytics Core service. To use this document, you should be familiar with one of the
mechanisms for modifying the configuration tree of Core services. Examples of such
mechanisms include the Explorer view of the Administration pages within the Security Analytics
user interface, or the REST interface accessible on each service through a web browser.

Find Help within the Core Service
Each configuration item within a Core service has a built-in help description of what the item
does. You can view this help information by hovering your mouse over the configuration item in
the Explorer view. Each configuration item also indicates whether it can be changed without
restarting or if a restart of the service is needed for the change to take effect.

Developers using the REST API can retrieve the help text for each configuration item by
sending the help message to the configuration node path.

Packet, Meta, and Session Storage
Each of the packet, meta, and session databases are configured through the /database/config
folder on each Security Analytics Core service. Each database has a configurable parameter to
specify where the Core service stores data. Packet, meta, and session databases follow a
predictable pattern for all of their configuration entries. Configuration items for the packet
database start with the prefix packet, meta database configuration starts with the prefix meta,
and the session database configuration items start with the prefix session.

Index Storage
The index configuration is stored in the /index/config folder on each Core service.

Topics

l Tiered Database Storage

l Manifests

11 Basic Database Configuration

Core Database Tuning Guide

Tiered Database Storage
This topic describes tiered database storage and provides recommendations for Hot, Warm, and
Cold tier storage.

Starting with version 10.4, the Archiver service has the capability to be configured to use tiered
storage. The concept of tiered storage is to put the most recent data on a Hot tier, which is the
fastest storage available on the Archiver.

Note: All services use the Hot tier by default.

The next tier is known as Warm and is typically cheaper and slower storage, such as a network-
attached storage (NAS). The Warm tier contains older data; how old depends upon how much
storage is allocated on the Hot tier and the average ingest rate. When the Hot tier reaches max
utilization, the natural progression is to move the oldest data from the Hot tier to the Warm tier.
When configured correctly, this happens automatically and is invisible to the end user. Queries
and data access happen automatically no matter what tier (Hot or Warm) the data resides on.
However, there can be a performance impact when accessing data on the Warm tier as
compared to the Hot tier, because access times on the Warm tier are typically slower.

In addition to Hot andWarm, there is also a Cold tier. The Cold tier is only used as a staging
area for offline backup. Security Analytics Core services do not access data on the Cold tier.
Security Analytics Core services move the oldest data to the Cold tier and consider it abandoned
(the service no longer accesses the data). This data can then be backed up to long-term storage
like tape for possible restoration months or even years later, depending on requirements. The
backing up and subsequent removal of data on the Cold tier must be handled outside of Security
Analytics Core services via scripts or other processes.

Caution: If the Cold tier becomes full because external processes are not removing data in a
timely manner, this causes the Security Analytics Core service to eventually stop the ingestion
of new data until the problem is corrected.

When moving data to the Cold tier, RSA recommends that the directory remain on the same
mount point as where it is being moved from. Therefore, if the files are coming from the Warm
tier, it is far better for performance reasons to set the Cold tier directory on the same file
system. The reason for this is that the service attempts to simply move the file and directory to
the Cold tier, which is a nearly instantaneous operation on the same file system. If the move
fails, the fallback is to copy the data to the Cold tier, which takes more processing time and
causes additional I/O contention on the tier from which it is being copied.

Tiered Database Storage 12

Core Database Tuning Guide

Archiver
The tiers of storage capabilities are used by the Archiver. You can configure Archiver to only
use Hot storage (the default), Hot and Warm, or all three (Hot, Warm and Cold). All services
must use Hot, you cannot configure a service to only use Warm. Data flows
from Hot to Warm and finally to Cold. You can also skip Warm and go from Hot to Cold. If Cold
(offline) storage is not configured, the oldest data is deleted on the last configured tier, which
has been the standard operating procedure.

The typical Archiver deployment sets all the databases to unlimited size (packet.dir, meta.dir,
session.dir, index.dir, and optionally the Warm tier variants), which means that the size specifier
is left off or set to zero. This lets the databases and index grow unbounded. Instead of each
database managing their own size and rolling out only when each individual database exceeds
their configured size, Archiver rolls out everything together using the /index sizeRoll command.
This enables the databases and index to roll out in unison. For more information on sizeRoll, see
Asynchronous Rollover in Rollover.

Archiver is typically configured to place the index, session, meta, and packet (log) DB on the
same volume, instead of multiple volumes like a Concentrator or Decoder. Although this can
potentially cause more I/O contention when concurrent reads happen across multiple databases,
it also maximizes overall retention. Because all databases are on the same volume, they are
configured to roll out together, which minimizes orphaning of data. Decoder and Concentrator
are configured for maximum I/O speed, but can suffer from estimates on the proper volume
sizing.

For example, if the session DB is too large, it may have enough storage for six months of
retention, whereas the meta DB and index only have retention for four months. Because the
session, meta DB, and index are intricately tied together, the shortest retention period for all
three define the overall retention period (in this case, four months). Retention of individual
databases is mostly affected by factors beyond our control, such as traffic captured, meta
generated (parsers, feeds, rules) and filtering. The databases are easily resized by a simple
configuration change, but this usually also involves changes at the hardware and file system
level to adjust partitions, which complicates dynamic resizing. Archiver avoids these problems
by using a single volume for everything, with the trade-off of somewhat slower I/O speed.

13 Tiered Database Storage

Core Database Tuning Guide

Manifests
This topic describes manifest files and provides an example manifest for a meta DB file. It
also describes manifest searching and provides an example manifest search.

Manifest files are created with every session, meta, and packet (log) DB file and index slice
directory. A manifest file is a file that describes several key pieces of information about the data
to which it refers. Manifest files are written as a JSON record. Manifest files travel with the
data they represent from tier to tier. If the data they represent is deleted, the manifest file is also
deleted, except in the following special case. If the service has /database/config/manifest.dir
configured to a valid directory, at the point when the manifest data is deleted, a copy of the
manifest file is placed into the directory pointed at bymanifest.dir (the directory is created if it
does not exist). This enables a Security Analytics feature called historical manifest searching.

The intention of this process is to keep historical manifest files for years, in one location for
offline querying. As you might imagine from a service running for many years, this can
potentially generate hundreds of thousands of files. This should not be a concern however, as the
service automatically compresses files into a single archive in order to save space when they
grow too numerous. Manifest files are very small and compress well.

Example manifest (meta-000000023.nwmdb.manifest) for a meta DB file:

{

"filename" : "meta-000000023.nwmdb",

"size" : 185153768,

"fileTime" : 1403903940,

"id1" : 150814110,

"id2" : 159341086,

"session1" : 4023382,

"session2" : 4250442,

"time1" : 1403903879,

"time2" : 1404739851

}

filename = The filename for the db file the manifest represents

size = The size in bytes of the db file

fileTime = The time the file was created

id1 = The starting id in the file (for this example, the starting

meta ID)

Manifests 14

Core Database Tuning Guide

id2 = The last id in the file (for this example, the last meta ID)

session1 = The starting session ID of the first meta in the file

session2 = The last session ID of the last meta in the file

time1 = The POSIX time of the first "time" meta found in the file

time2 = The POSIX time of the last "time" meta found in the file

In this example manifest, the most important fields are fileTime, time1 and time2. All three
fields are written in POSIX time. time1 and time2 are the starting and stopping times of the
meta recorded in the meta DB file meta-000000023.nwmdb. In particular, fileTime is always
the time in which the file was created (not last modified). time1 and time2 are representative of
the min and max range of the parsed data within the meta DB file. When doing historical
searches by time, time1 and time2 are preferred over fileTime, when they are present. Manifest
files for the other databases and index contain some different fields, but all have enough
information to perform time based queries.

Search Historical Manifests
When manifests are collected in the directory pointed to by manifest.dir, it is assumed that the
data they refer to was copied to the Cold tier and eventually backed up to offline storage.
Because the historical manifests are still accessible by the service, this allows time-based
queries to be performed on offline data, in order to determine what data needs to be restored for
a given time range.

You can search manifests using the /database manifest command:

manifest: If a manifest directory is defined, it will allow operations

on the manifest files (such as a time based query) for database files in

cold storage.

security.roles: database.manage

parameters:

op - <string, optional, {enum-one:query|compress}> The operation to

perform (defaults to query)

time1 - <date-time, optional> The beginning time (UTC) for matching

offline database files

time2 - <date-time, optional> The ending time (UTC) for matching off-

line database files

timeFormat - <string, optional, {enum-one:posix|simple}> Specify the

time format that is returned (posix, simple), default is posix

Example search:

15 Manifests

Core Database Tuning Guide

/database manifest time1="2014-04-20 11:00:00" time2="2014-04-11
11:20:00" timeFormat=simple

The search returns all manifests that match the query:

[filename=meta-000001691.nwmdb size=4843826176 fileTime="2014-Apr-

20 11:06:34" id1=301555027452 id2=301733101896 session1=15352020201 ses-

sion2=15361024200 time1="2014-Apr-20 11:05:34" time2="2014-Apr-20

11:16:34" compression=gzip]

[filename=session-000001865.nwsdb size=268439552 fileTime="2014-

Apr-20 11:06:35" id1=14674145801 id2=14682041000 metaId1=288217522208

metaId2=288370660984 packetId1=11733872441 packetId2=11741745303]

[filename=session-000001866.nwsdb size=268439552 fileTime="2014-

Apr-20 11:18:31" id1=14682041001 id2=14689936200 metaId1=288370660985

metaId2=288520616949 packetId1=11741745304 packetId2=11749618589]

The returned results can be used to correlate which files should be restored from backup for the
given time range. For Security Analytics 10.4 and later, a service called Security Analytics
Workbench can be used to take the restored files and provide a query interface over the restored
data using one or more collections.

Setup of the Workbench service is beyond the scope of this document. For more information, see
Configure Data Backup and Restore in the Archiver Configuration Guide

Manifests 16

Core Database Tuning Guide

Advanced Database Configuration
This topic explains the advanced configuration options of the Security Analytics Core database.

The configuration options of the Security Analytics Core database may change from one release
to the next. However, many of the configuration items do not change frequently and are
documented here. This is not an exhaustive list, since new features are added in every release,
and they may require new configuration items. For the most up-to-date documentation, refer to
the built-in help functionality of the Security Analytics Core service.

Topics

l Database Configuration Nodes

l Index Configuration Nodes

l SDK Configuration Nodes

l Per-User Configuration Nodes

l Scheduler

l Rollover

17 Advanced Database Configuration

Core Database Tuning Guide

Database Configuration Nodes
This topic describes database configuration nodes. The following database configuration nodes
are some of the advanced database configuration items of the Security Analytics Core database
that do not change frequently.

packet.dir, meta.dir, session.dir
This is the primary configuration entry for each database (also known as the Hot tier). It controls
where in the file system the respective databases are stored. This configuration entry
understands a complex syntax for specifying many directories as storage locations.

Configuration syntax:

config-value = directory, { ";" , directory } ;

directory = path, [("=" | "==") , size] ;

path = ? linux filesystem path ? ;

size = number size_unit ;

size_unit = "t" | "TB" | "g" | "GB" | "m" | "MB" ;

number = ? decimal number ? ;

Example:

/var/netwitness/decoder/packetdb=10 t;/var/net-

witness/decoder0/packetdb=20.5 t

The size values are optional. If set, they indicate the maximum total size of files stored there
before databases roll over. If the size is not present, the database does not automatically roll
over, but its size can be managed using other mechanisms.

The use of = or == is significant. The default behavior of the databases is to automatically create
directories specified when the Core service starts. However, this behavior can be overridden by
using the == syntax. If == is used, the service does not create any directories. If the directories
do not exist when the service starts, the service does not successfully start processing. This
gives the service resilience against file systems that are missing or unmounted when the host
boots.

Database Configuration Nodes 18

Core Database Tuning Guide

If you modify the size of a directory in use, the size takes effect immediately, as long as it is
larger. If the size is smaller, it is ignored if it is more than 10 percent smaller than the existing
size. This prevents an accidental mistype that causes a enormous loss of data. For example, if
the packet database was configured for 12 TB and someone mistyped it as 12 GB, the database
would end up deleting over 11 TBs of data in order to shrink it down to just 12 GB. Instead, the
database ignores the 12 GB setting and logs a warning, so that the error can be caught quickly.
Of course, if the size specified is actually correct and more than a 10 percent difference from
the existing size, the only recourse for it to take effect is to restart the service. When it starts
back up, it assumes the size is correct and adjusts the database to the new size by rolling out the
oldest data until the new size is reached. If you actually do want to adjust the size downward
and by more than 10 percent without restarting the service, you need to modify the size multiple
times, each time adjusting it by less than 10 percent. Watch the service logs to know when the
database has adjusted to the new size, as it only adjusts the total database size when the latest
file being written has been closed.

If new directories get added or deleted (semicolon separated), they do not take effect until the
service restarts.

packet.dir.warm, meta.dir.warm, session.dir.warm
These settings are optional and are used for Warm tier storage on an Archiver. By default, they
are blank and unused. If configured, they follow the same format and behavior as packet.dir,
meta.dir, and session.dir (see packet.dir, meta.dir, and session.dir above). When configured, the
oldest file on the Hot tier moves to the Warm tier when no available space remains in the Hot
tier.

packet.dir.cold, meta.dir.cold, session.dir.cold
These settings are optional and are used to move files from either a Hot or Warm tier storage
system to the Cold tier directory specified. Specifically, this setting is nothing more than a
directory, there are no size specifiers. However, the defined path name has a few special format
specifiers that you can use to name the directory with the date of the data in it.

%y = The year of the data being moved to the cold tier

%m = The month of the data being moved to the cold tier

%d = The day of the data being moved to the cold tier

%h = The hour of the data being moved to the cold tier

%##r = A block of time within a day. So %12r would create two blocks, 00

and 01. 00 for all data in the AM, 01 for all PM data

Example setting:

19 Database Configuration Nodes

Core Database Tuning Guide

packet.dir.cold = /var/netwitness/archiver/database1/alldata/cold-stor-

age-%y-%m-%d-%8r

For the setting above, if a log database file was about to be moved to cold storage and it was
created on 2014-03-02 15:00:00, it would be moved to the following directory on the Cold
tier:

/var/netwitness/archiver/database1/alldata/cold-storage-2014-03-02-01

The last number 01 needs some explanation. The %8r specifier breaks the hours of the day into
24 / 8 = 3 parts. The first eight hours of the day would be block 00, so 12 a.m. to 8 a.m. The next
eight hours are from 8 a.m. to 4 p.m. and are assigned block 01. Since the data being moved to
cold storage was created at 3 p.m., it falls into block 01. The %r format specifier is useful for
backing up files with a granularity somewhere between a day %d and a single hour %h. The
Cold storage directory is created on demand and is defined by the data being moved when the
format specifiers are used.

The ability to add a date to the path of the data is just a convenience added for backup and
restore. It is a way of tagging the data with a date in the path.

packet.file.size, meta.file.size, session.file.size
This controls the size of the files created with each database. It is normally not necessary to
change these values as the default values typically work well. This setting takes effect
immediately for subsequent files.

packet.files, meta.files, session.files
This setting controls the number of files held open by the database. You can increase this value
to improve performance: however, the operating system has an overall limit on the number of
files that service can keep open. If this limit is exceeded, an error is reported and the service
does not function. This setting takes effect immediately.

In Security Analytics 10.6 and later, the default value for packet.files, meta.files, and
session.files is auto and the service manages the number of open files based on this criteria:

1. Number of collections

2. ​Amount of system memory

When set to auto, the number is dynamic and you can view it in the logs when it changes. For
Security Analytics 10.6, RSA recommends that you set this value to auto and do not change it
to a specific number.

Database Configuration Nodes 20

Core Database Tuning Guide

packet.free.space.min, meta.free.space.min, ses-
sion.free.space.min
This setting provides a safety limit on the minimum free space that exists on the paths specified
by the packet.dir, meta.dir, and session.dir directories, respectively. This setting is used to
prevent the service from running out of space in the event that other programs have filled up the
space that should be dedicated to each of the databases. This setting takes effect immediately.

packet.index.fidelity, meta.index.fidelity
This setting controls how frequently packet ID locations and meta ID locations are indexed. This
setting can be increased to reduce the amount of space needed by each packet or meta nwindex
file, but increasing the setting reduces the speed at which individual packets or meta items can
be located. This setting takes effect immediately.

The session database does not have a fidelity setting because it does not generate index files.

packet.integrity.flush, meta.integrity.flush, session.integrity.flush
This setting controls whether the database forces a sync operation on the file system when it is
finished writing a file. The default value is sync, which means when a file is closed there will
be a significant delay while the data writes to non-volatile storage. It may be necessary to set
this to normal in order to achieve higher sustained write rates, especially on a Decoder. This
setting takes effect on the next file created. Therefore, it is expected that at least one more sync
will happen if the value was just changed to normal.

If packet drops are occurring and packet.integrity.flush is set to sync, set it to normal and
monitor. Keep the session and meta flush settings on sync. If packet drops are still problematic,
then set all three to normal and monitor.

packet.write.block.size, meta.write.block.size, ses-
sion.write.block.size
The block size represents how much data is allocated at a time within each database file. Larger
block sizes can provide higher throughput and compression ratios, and can improve the rate at
which items can be retrieved from the database sequentially. However, larger block sizes have a
detrimental impact on random read speed for compressed packet and meta items. This setting
takes effect immediately.

21 Database Configuration Nodes

Core Database Tuning Guide

packet.compression, meta.compression
These parameters control whether the databases compress data. Compression reduces the
amount of storage needed by each database, but it can have a major detrimental impact on the
speed at which items are written to the database, and the speed at which items are retrieved
from the database. Changes take effect immediately on the next file creation.

As of Security Analytics 10.4, the valid values for this parameter are gzip, bzip2, lzma, or
none. gzip is the preferred algorithm when compression is used, because it provides a good
balance between performance and space savings. Both bzip2 and lzma can achieve better
space savings, but the tradeoff in speed is substantial and likely should only be considered for
low ingest speeds and when storage space is at a premium.

packet.compression.level, meta.compression.level
You can use these settings to further refine how the compression algorithms behave. They have
no effect when compression is disabled. The valid values are between 0–9. The default value of
zero means let the software pick the best setting for speed and compression. The values between
1 and 9 are used as a sliding scale between performance (1) and compression (9). The value of 9
typically gives you the best compression for a given algorithm, but the worst performance.
Somewhere in the middle is usually the best setting, which is what zero picks.

hash.algorithm
This setting controls how the database files are hashed. The default value is none, so no hashing
is performed. The valid values are none, sha256, sha1, or md5. Database files can be hashed
to provide evidence that they have not been tampered with since they were closed. Hashing is
time intensive and affects ingest performance when enabled. This change takes effect
immediately.

hash.databases
This setting controls which databases are hashed. Valid values are session, meta, and
packet and are comma separated when hashing multiple databases. This change takes effect
immediately.

Database Configuration Nodes 22

Core Database Tuning Guide

hash.dir
This setting is normally empty, which means the hash file is created in the same directory as the
database file that was hashed. If this setting is defined, the hash file is written to the directory
specified instead. This could be some form of write-once storage for resilience against hash
tampering.

Hash files are small XML files containing the hex encoded hash along with metadata about the
database file that was hashed.

23 Database Configuration Nodes

Core Database Tuning Guide

Index Configuration Nodes
This topic describes index configuration nodes. The following index configuration nodes are
some of the advanced database configuration items of the Security Analytics Core database that
do not change frequently.

index.dir
The index.dir setting controls where the files used by the index are stored. This setting supports
the same syntax as the packet.dir, meta.dir, and session.dir settings.

index.dir.warm
The Warm tier storage for index slices. This setting supports the same syntax as
packet.dir.warm, meta.dir.warm, and session.dir.warm.

index.dir.cold
The Cold tier storage for index slices. This setting supports the same syntax as packet.dir.cold,
meta.dir.cold, and session.dir.cold.

index.slices.open
This setting controls the number of index slices held open by the index. Index slices are opened
automatically as needed by queries. When queries complete, the index engine may hold the
slices open so that subsequent queries execute faster. The most recently created slices are the
slices that will be held open, since they are mostly likely to be used by queries.

If queries against the index require the index to open slices, then they will execute slower than if
the slices were already open. Therefore, this parameter should be tuned such that most queries
executed against the index will work on open slices. However, each open index slice consumes
some resources, such as file handles and memory. If there are too many index slices open, the
overall performance of the service can suffer.

You should set this parameter so that the open index slices will cover most of the time ranges
that most queries will need. For example, if most queries are over the past two weeks, and there
are index slices created every 8 hours, then there are 14 days x 3 slices per day, or 42 slices
created over the past two weeks. Thus, you could set index.slices.open to 42 so that only slices
that are likely to be used are held open.

Index Configuration Nodes 24

Core Database Tuning Guide

If this parameter is set to 0, then all slices are held open until the next index save. In this
scenario, the only thing limiting the number of slices open in the process is the number of slices
in the index.

page.compression
Deprecated. Versions of the Security Analytics Core index between 9.8 and 10.2 supported two
different index compression algorithms, and you can choose between them using this setting. As
of 10.3, the only recommended value is the default of huffhybrid.

save.session.count
This setting controls how often the index is automatically saved when new sessions are inserted.
If the value of save.session.count is greater than 0, any time more than save.session.count
sessions are added to the index, the index automatically saves itself. If the save.session.count is
set to 0, this feature is disabled and the index will not automatically save itself when new
sessions are added to the index.

Save.session.count can be used to implement an automatic save pattern that is based on the
volume of data that enters the index. This is useful because it allows a lightly loaded system to
generate save points less often.

For more information on the topic of index saves, see the section in this guide on Optimization
Techniques.

25 Index Configuration Nodes

Core Database Tuning Guide

SDK Configuration Nodes
This topic describes the SDK configuration nodes that affect the database. There are some
additional configuration items in each Core service that affect the database, but do not actually
affect how the database stores or retrieves data. These settings exist in the /sdk/config folder.

max.concurrent.queries
This setting controls how many query operations are allowed on the database simultaneously.
Allowing more simultaneous query operations can improve overall responsiveness for more
users, but if the query load of the Core service is very I/O bound, having a high
max.concurrent.queries value can have a detrimental effect. The recommended value is near the
number of cores on the system, including hyper threading. Thus, for an appliance with 16 cores,
the value should be somewhere close to 32. Subtract a few for aggregation threads and general
system response threads. Subtract a few more if this is a hybrid system (for example, both a
Decoder and Concentrator running on the same appliance). There is no magic number, but
somewhere between 16 and 32 should work well.

max.pending.queries
This setting controls the backlog size for the query engine of the database. Larger values allow
the database to queue more operations for execution. A queued query does not make progress on
its execution, so it may be more useful to make the system produce errors when the queue is full,
rather than allowing the queue to grow very large. However, on a system that is primarily
performing batch operations such as reports, there may be no detrimental effect to having a large
queue.

cache.window.minutes
This setting controls a feature of the query engine that is intended to improve query
responsiveness when there are a large number of simultaneous users. For more information on
cache window, see Optimization Techniques.

SDK Configuration Nodes 26

Core Database Tuning Guide

max.where.clause.cache
The where clause cache controls how much memory can be consumed by query operations that
need to produce a large temporary data set to evaluate sorting or counting. If the where clause
cache size is overflowed, the query still works, but it is much slower. If the where clause cache
is too large, it is possible for queries to allocate so much memory that the service would be
forced into swap or run out of memory. Thus, this value multiplied by the max.concurrent.queries
should always be much less than the size of physical RAM. This setting understands sizes in the
form of a number followed by a unit, for example 1.5 GB.

query.level.1.minutes, query.level.2.minutes, query.level.3.minutes
These settings are available in Security Analytics 10.4 and earlier versions.

In Security Analytics 10.4 and earlier, the Core database supports three query priority levels.
Each core user is assigned to one of the priority levels. Therefore, there are up to three groups of
users that can be defined for the purposes of performance tuning. These settings control how
long each user level is allowed to execute the queries. For example, lower privileged users may
have a lower value so that they are not able to use all the resources of the Core service with
long-running queries.

query.timeout
This setting is available in Security Analytics 10.5 and later versions.

Query levels have been replaced in Security Analytics 10.5 and later with per user account
query timeouts. For trusted connections, these timeouts are configured on the Security Analytics
server. For accounts on Core services, there is a new config node under each account called
query.timeout, which is the maximum amount of time in minutes that each query can run.
Setting this value to zero means no query timeout will be enforced by the Core service.

max.where.clause.sessions
This setting is available in Security Analytics 10.5 and later versions.

This setting imposes a limit on how many sessions can be scanned by a single query. For
example, if a user selects all meta from the database, the database stops processing results once
the number of sessions read for the query reaches this configuration value. The value of 0
disables this limit.

27 SDK Configuration Nodes

Core Database Tuning Guide

The number of sessions needed to fully process a query is equal to the number of sessions that
match the WHERE clause of the query, assuming that all terms in the where clause have a
suitable index. If there are terms in the where clause that are not indexed, the database has to
read more sessions and meta, and reaches this limit sooner.

max.query.groups
This setting is available in Security Analytics 10.5 and later versions.

This setting imposes a limit on the number of unique groups collected in a single query. For
example, if a query has a group by clause with multiple metas that have high unique value
counts, the amount of memory needed for that query could easily outpace the amount of RAM
available on the server. Thus, this limit exists to prevent out-of-memory conditions from
happening.

Setting a value of 0 disables this limit.

packet.read.throttle
This is a decoder-only setting that affects the access to the packets database. When
packet.read.throttle is set to a value greater than 0, the decoder attempts to throttle packet reads
when it detects packet contention on the packet database. Higher numbers provide more
throttling. Changes takes effect immediately.

cache.dir, cache.size
All Security Analytics Core services maintain a small file cache of raw content extracted from
the device. These parameters control the location (cache.dir) and size (cache.size) of this cache.

parallel.values
This setting is available in Security Analytics 10.5 and later versions.

This setting allows SDK-values operations to be executed in parallel. If this is set to 0, it will
disable parallel execution. If it is set to a value greater than 0, it represents the number of
threads created when each SDK-values operation is executed. The maximum value is the
number of logical CPUs available when the process started.

Setting a higher value for parallel.values is useful when there are small numbers of simultaneous
users, since it will allow for more complex Investigations to be executed more quickly. If there
are many simultaneous users, it is better to use a low value here, since there will be many
independent SDK-values operations executed simultaneously.

SDK Configuration Nodes 28

Core Database Tuning Guide

parallel.query
This setting is available in Security Analytics 10.5 and later versions.

This configuration is similar to the parallel.values setting in that the maximum value is the
number of logical CPUs. Setting parallel.query to a specific value should take into account the
number of simultaneous users to maximize CPU utilization without consistently exceeding
available resources.

Setting a higher value for parallel.query is useful when there are small numbers of simultaneous
users and queries, since it will allow more complex queries to be executed more quickly. If there
are many simultaneous users and queries, it is better to use a low value, since there will be
many independent SDK-query operations executed simultaneously.

Query operations are limited by the meta database read rate, so setting parallel.query to a value
higher than 4 is unlikely to produce dramatically better results than the default value of 0. The
best number to use for parallel.query will depend on the type of storage attached. Experiment
with different values of parallel.query to determine the best results for your storage system.

29 SDK Configuration Nodes

Core Database Tuning Guide

Per-User Configuration Nodes
This topic describes the per-user configuration nodes. There are settings that influence the
actions users are allowed to perform on the database. These settings are stored in the
configuration tree at /users/accounts/<username>/config, where <username> is the name of
the user to which the settings apply.

query.prefix
A query prefix applies a filter to every query operation that the user performs. This is
implemented by taking the query.prefix values and appending it the the where clause of each
query using the logical && (and) operator. For more information on Where Clauses, see Queries.

query.level
This setting is available in Security Analytics 10.4 and earlier versions.

The query.level setting assigns the query level that the users have for every query they perform.
These influence whether their queries are limited by the query.level.1.minutes,
query.level.2.minutes, or query.level.3.minutes.

query.timeout
This setting is available in Security Analytics 10.5 and later versions.

The query.timeout setting assigns the maximum amount of time in minutes that a user can run
each query. For trusted connections, these timeouts are configured on the Security Analytics
server. For accounts on Core services, this setting is stored in the configuration tree at
/users/accounts/<username>/config, where <username> is the name of the user to which the
setting applies. When this value is set to zero, the Core service does not enforce the query
timeout.

session.threshold
The session.threshold setting assigns a maximum session threshold for the user. If set, this
threshold value is assigned to all values calls that the user performs. A detailed discussion of
both the values call and thresholds is covered in this guide.

Per-User Configuration Nodes 30

Core Database Tuning Guide

Scheduler
This topic provides a brief introduction to the scheduler and explains how to schedule
commands. All Security Analytics Core services come with a built-in scheduler found under
/sys/config/scheduler. To use the scheduler, you add the command you want to run periodically
using one of two messages:

/sys/config/scheduler addInter - Add a command to run at the specified interval (every
N hours, minutes or seconds)

or

/sys/config/scheduler addMil - Add a command to run at the specified time of day or
even specific days of the week

Example
For example, suppose that you have a use case to delete all packet data that is greater than
seven days old. Since you cannot configure the packet.dir setting to rollout data based on a time
interval, you need to schedule the /database timeRoll command to run every so often. For this
example, create a timeRoll to run every 20 minutes:

addIter minutes=20 pathname=/database msg=timeRoll params="type=packet

days=7"

This command adds a scheduled task (it is persisted between restarts of the service) to run every
20 minutes, on the /database node, and ages out all packet data older than seven days. The
params parameter is used to pass all the parameters to the command specified (in this case
timeRoll). Notice how it quotes all the embedded parameters (type and days) so they are not
interpreted as parameters to be passed to the outer addIter command. If the parameters inside
params need to use quotes, you must escape the inner quotes with a backslash. You can rewrite
it with embedded quotes, which does not alter the command in any way:

addIter minutes="20" pathname="/database" msg="timeRoll" param-

s="type=\"packet\" days=\"7\""

This command works identically to the original, but demonstrates how to escape complicated
parameter passing. Additional useful scheduler commands are:

/sys/config/scheduler print - Print all scheduled commands (you can also see them by
doing an ls on the scheduler node).

31 Scheduler

Core Database Tuning Guide

/sys/config/scheduler delSched - Delete a scheduled command by passing in the
identifier shown in the print (or ls) command.

This is a brief introduction to the scheduler. For more information on command parameters, send
the help message to the scheduler node and pass in the command name via the msg parameter.
For more information, see the Services Explore View topic in the Host and Services Getting
Started Guide.

Scheduler 32

Core Database Tuning Guide

Rollover
This topic describes the two rollover mechanisms. The database operates as a first-in, first-out
(FIFO) queue. New data is always appended to the database, and the oldest data is
automatically removed as needed. Data that is in the middle of the database is immutable,
meaning it cannot be modified.

There are two mechanisms to for rollover: synchronous and asynchronous.

Synchronous Rollover
Synchronous rollover refers to rollover settings that are applied in response to a write operation
on the database. That means data is removed from the database in direct response to the need to
write new data. Synchronous rollover is configured by setting size values on the configuration
for packet.dir, meta.dir, session.dir, and index.dir.

Synchronous rollover on the packet, meta, and session databases can occur within any write
operation. Synchronous rollover on the index occurs when the index is saved.

Asynchronous Rollover
Asynchronous rollover refers to database file removal that occurs when an explicit rollover
command is issued to the database. Most commonly this type of rollover is scheduled to run
periodically using the built-in scheduler of the Core service. The user can also explicitly request
it.

The asynchronous rollover command is the sizeRoll message present on the /index and
/database nodes of the configuration tree. The message on the /database node does size
rollover on packet, meta, and session databases only, while the message on the /index node
can do simultaneous rollover on both the index and the packet, meta, and session databases.

The sizeRoll command has the following parameter syntax:

size-roll-params = {type-param, space}, (max-size-param | min-free-

param | max-percent-param), {max-size-warm-param, space}

type-param = "type=", {type-flag} , { ",", type-flag } ;

type-flag = "packet" | "meta" | "session" ;

max-size-param = "maxSize=", number, {space}, unit ;

max-percent-param = "maxPercent=", number, {space}, unit ;

min-free-param = "minFree=", number, {space}, unit ;

max-size-warm-param = "maxSizeWarm=", number, {space}, unit ;

33 Rollover

Core Database Tuning Guide

unit = "t" | "TB" | "g" | "GB" | "m" | "MB" ;

number = ? decimal number ? ;

percentage = ? number between 0 and 100 ? ;

The type parameter controls the databases to consider for removing the oldest data based on
total size or space remaining. If type is not specified on the /index sizeRoll, only the index is
considered for rollover operations.

The maxSize parameter sets a current maximum size of the database or index. If the database
is larger than this size, oldest data is deleted first (or moved to the Warm or Cold tier, depending
on the configuration) until total size is less than maxSize. The sizeRoll operation determines
which data is oldest out of all the databases and the index based on session IDs. Sessions or
index entries with lowest session IDs are deleted first, possibly including removing meta and
packet databases that are orphaned by removing entries from the session database. The index
data is rolled out if the sessions that it refers to are removed.

The maxSizeWarm parameter sets a current maximum size on the Warm tier, but otherwise
behaves identically to the maxSize parameter. When data is rolled out on the Warm tier, it is
moved to the Cold tier (if configured) or deleted.

The maxPercent parameter sets a maximum percentage of all the volumes of all databases
passed in type parameter combined. When exceeded, oldest data is deleted first until total size
is less than maxPercent of total volumes.

The minFree parameter sets a minimum allowed free space on the volumes before oldest data
is deleted.

Each call to the sizeRoll operation provides a single pass through the database to delete files.
When the operation completes, the current size utilization of the database will have met the
criteria specified by the maxSize, maxPercent, or minFree parameters and the optional
maxSizeWarm. Therefore, this operation can be scheduled periodically to ensure that the
database can continue to operate uninterrupted.

Example
The following example shows a typical sizeRoll scheduler entry for an Archiver:

pathname=/index minutes=5 msg=sizeRoll params="type=meta,session,packet

maxSize=25TB maxSizeWarm=150TB"

This scheduler entry specifies that every five minutes the database ensures that the max size of
the meta, session, packet, and index does not exceed 25 terabytes on the Hot tier and does not
exceed 150 terabytes on the Warm tier.

Rollover 34

Core Database Tuning Guide

Queries
This topic covers the database query syntax. There are three main mechanisms for performing
queries in the database, the query, values, and msearch calls on the /sdk folder on each
Core service.

The query call returns meta items from the meta database, possibly using the index for fast
retrieval.

The values call returns groups of unique meta values sorted by some criteria. It is optimized
to return a subset of the unique values sorted by an aggregate function such as count.

The msearch call takes text search terms as it's input, and returns matching sessions that match
the search terms. It can search within indexes, meta, raw packets, or raw logs.

Query Syntax
The query message has the following syntax:

query-params = size-param, space, query-param, {space, start-meta-

param}, {space, end-meta-param};

size-param = "size=", ? integer between 0 and 1,677,721 ? ;

query-param = "query=", query-string ;

start-meta-param = "id1=", metaid ;

end-meta-param = "id2=", metaid ;

metaid = ? any meta ID from the meta database ? ;

The id1, id2, and size parameters form a paging mechanism for returning a large number of
results from the database. Their usage mostly benefits developers who are writing applications
directly against the Security Analytics Core database. Normally, results are returned in the order
of oldest to newest data (higher meta IDs are always more recent). In order to return results
from most recent to oldest, reverse the IDs such that id1 is larger than id2. This has a slight
performance penalty, because the where clause must be completely evaluated before processing
in reverse order can begin.

When size is left off or set to zero, the system streams back all results without paging. For the
RESTful interface, this results in the full response to be returned with chunked-encoding. The
native protocol returns the results over multiple messages.

The query parameter is a query command string with its own Security Analytics specific
syntax:

35 Queries

Core Database Tuning Guide

query-string = select-clause {, where-clause} {, group-by-clause {,

order-by-clause } } ;

select-clause = "select ", ("*" | meta-or-aggregate {, meta-or-

aggregate}) ;

where-clause = " where ", { where-criteria } ;

meta-or-aggregate = meta_key | aggregate_func, "(", meta_key, ")" ;

aggregate_func = "sum" | "count" | "min" | "max" | "avg" | "distinct"

| "first" | "last" | "len" | "countdistinct" ;

group-by-clause = " group by ", meta-key-list

meta-key-list = meta_key {, meta-key-list}

order-by-clause = " order by ", order-by-column

order-by-column = meta-or-aggregate { "asc" | "desc" } {, order-by-

column}

The select clause allows you to specify either * to return all the meta in all the sessions that
match the where clause, or a set of meta field names and aggregate functions to select a subset
of the meta with each session.

The aggregate functions have the following effect on the query result set.

Function Result

sum Add all meta values together; only works on numbers

count The total number of meta fields that would have been returned

min The minimum value seen

max The maximum value seen

avg The average value for the number

distinct Returns a list of all unique values seen

countdistinct Returns the number of unique values seen. Countdistinct is equivalent to the

number of metas that would have been returned by the distinct function.

first Returns the first value seen

Queries 36

Core Database Tuning Guide

Function Result

last Returns the last value seen

len Converts all field values to a UInt32 length instead of returning the actual

value. This length is the number of bytes to store the actual value, not the length

of the structure stored in the meta database. For example, the word "NetWit-

ness" returns a length of 10. All IPv4 fields, like ip.src, return 4 bytes.

Where Clauses
The where clause is a filter specification that allows you to select sessions out of the collection
by using the index.

Syntax:

where-criteria = criteria-or-group, { space, logical-op, space, cri-

teria-or-group } ;

criteria-or-group = criteria | group ;

criteria = meta-key, (unary-op | binary-op meta-value-ranges)

;

group = ["~"], "(" where-clause ")" ;

logical-op = "&&" | "||" ;

unary-op = "exists" | "!exists" ;

binary-op = "=" | "!=" | "<" | ">" | ">=" | "<=" | "begins" |

"contains" | "ends" | "regex" ;

meta-value-ranges = meta-value-range, { ",", meta-value-range } ;

meta-value-range = (meta-value | "l"), ["-", (meta-value | "u")] ;

meta-value = number | ('"' text '"') | ip-address | mac-address

| ('"' date-time '"') ;

When specifying rule criteria, the meta-value part of the clause is expected to match the type of
the meta specified by the meta-key. For example, if the key is ip.src the meta-value should
be an IPv4 address.

Query Operators

The following table describes the function of each operator.

37 Queries

Core Database Tuning Guide

Operator Function

= Match sessions containing the meta value exactly. If a range of values is spe-

cified, any of the values is considered a match.

!= Matches all sessions that would not match the same clause as if it were written

with the = operator.

< For numeric values, matches sessions containing meta with the numeric value

less than the right side. If the right side is a range, the first value in the range is

considered. If multiple ranges are specified, the behavior is undefined. For text

metas, a lexicographical comparison is performed.

<= Same behavior as <, but sessions containing meta that equals the value exactly

are also considered matches.

> Similar to the < operator, but matches sessions where the numeric value is

greater than the right side. If the right side is a range, the last value in the range

is considered for the comparison.

>= Same behavior as >, but sessions containing meta that equals the value exactly

are also considered matches.

begins Matches sessions that contain text meta value that starts with the same char-

acters as the right side.

ends Matches sessions that contain text meta that ends with the same characters as

the right side.

contains Matches sessions that contain text meta that contains the substring given on the

right side.

regex Matches sessions that contain text meta that matches the regex given on the right

side. The regex parsing is handled by boost::regex.

exists Matches sessions that contain any meta value with the given meta key.

!exists Matches sessions that do not contain any meta value with the given meta key.

Queries 38

Core Database Tuning Guide

Operator Function

length Matches sessions that contain text meta values of a certain length. The expres-

sion on the right side must be a non-negative number.

Text Values

The system expects quoted text values. Although unquoted strings may work, the values
expressed may be ambiguously interpreted as numbers or dates.

It is also important to quote any text value that may contain - so that it is not interpreted as a
range.

IP Addresses

IP addresses can be expressed using standard text representations for IPv4 and IPv6 addresses.
In addition, the query can use CIDR notation to express a range of addresses. If CIDR notation
is used, it is expanded to the equivalent value range.

MAC Addresses

A MAC address can be specified using standard MAC address notation:
aa:bb:cc:dd:ee:ff

Date and Time Expressions

In Security Analytics Core, dates are represented using Unix epoch time, which is the number of
seconds since Jan 1, 1970 UTC. In queries, you can express the time as this number of seconds,
or you can use the string representation. The string representation for the date and time is
YYYY-mmm-DD HH:MM:SS. A three-letter abbreviation represents the month. You can also
express the Month as a two-digit number, 01–12.

All times specified in queries are expected to be in UTC.

Special Range Values

Ranges are normally expressed with the syntax "smallest" - "largest", but there are
some special placeholder values you can use in range expressions. You can use the letter l to
represent the lower-bound of the all meta values as the start of the range, and u to represent the
upper bound. The bounds are determined by looking at the smallest or largest meta value found
in the index out of all the meta values that have already entered the index.

Note: If you use the l or u tag, it should be unquoted.

For example, the expression time = "2014-may-20 11:57:00" - u would match all
time from that 2014-may-20 11:57:00 to the most recent time found in the collection.

39 Queries

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing#CIDR_notation
https://en.wikipedia.org/wiki/MAC_address

Core Database Tuning Guide

Notice that it is easy to confuse a range expression with a text string. Make sure that text values
that contain - are quoted, and that hyphens within range expressions are not within quoted text.

Group By Clause (since 10.5)

The query API has the ability to generate aggregate groups from the results of a query call. This
is done using a GROUP BY clause on the query. When GROUP BY is specified, the result set
for the query is subdivided into groups. Each group of results is uniquely identified by the meta
values indicated in the group by clause.

For example, consider the query select count(ip.dst). This query returns a count of all
ip.dst metas in the database. However, if you add a group by clause, like this: select count
(ip.dst) group by ip.src, the query returns a count of the ip.dst metas found for each
unique ip.src.

As of Security Analytics version 10.5, you can utilize up to 6 meta fields in a group by clause.

The group by clause shares some of the same functionality as the values call, but it offers
significantly more advanced groups at the expense of longer query times. Producing the results
of a grouped query involves reading the meta from the meta database for all sessions that match
the WHERE clause, while a values call can produce its aggregates by reading the index only.

The contents of each group returned by the query are defined by the select clause. The select
clause can contain any of the aggregate functions or meta fields selected. If multiple aggregates
are selected, the result of the aggregate function is defined for each group. If non-aggregate
fields are selected, the meta fields are returned in batches for each group.

The result set of a group by query is encoded with the following rules:

1. All metas associated with a group are delivered with the same group number.

2. The first metas returned to the group identify the group key. For example, if the group by
clause specifies group by ip.src, then the first meta of each group will be an ip.src.

3. The normal, non aggregate metas are returned after the group key, but they all will have the
same group number as the group key metas.

4. The aggregate result meta fields for each group are returned next.

5. All fields within a group are returned together. Different group results will not be
interleaved.

If one of the GROUP BY metas is missing from one of the sessions matched by the where
clause, that meta field is treated as a NULL for the purposes of that group. When the results for
that group are returned, the NULL-valued parts of the group key will be omitted from the group's
results, since the database has no concept of NULL.

Queries 40

Core Database Tuning Guide

The semantics of a GROUP BY query differ from a SQL-like database in terms of what meta
fields are returned. SQL databases require you to explicitly select the group by columns in the
select clause if you want them to be returned in the result set. The Security Analytics Core
database always implicitly returns the group columns first.

A query with a GROUP BY clause honors the result set size parameter, if one is provided.
However, due to the nature of the grouping, it puts an additional burden on the caller to page and
reform groups if a fixed-size result set is requested. For this reason, you should not specify an
explicit result size when making a group by call. By not specifying an explicit size, the entire
result set will be delivered as partial results.

The following table describes the database honors configuration parameters that limit I/O or
memory impact of a group by query.

Parameter Function

/sdk/config/max.query.groups This is the limit on how many groups can be held in

memory to calculate aggregates. This parameter

allows you to limit the overall memory usage of the

query.

/sdk/config/max.where.clause.sessions This is the limit on how many sessions from the

where clause can be processed in a query. This para-

meter allows you to set a limit on the number of ses-

sions that have to be read from the meta and session

databases to resolve a query.

Order By Clause (since 10.5)

An order by clause can be added to a query than contains a group by clause. The order by clause
causes the set of grouped results to be returned in sorted order.

An order by consists of a set of items to sort by, in ascending or descending order. Sorting can
be performed on any data field that will be returned in the result set. This includes meta
specified by the select clause, aggregate function results specified by the select clause, or group
by meta fields.

The order by clause can sort over many columns. There is no limit on the number of order-by
columns allowed in the query, but a practical limit exists in that each of the order-by columns
must refer to something returned by the select clause or group by clause. The multiple column
sort is imposed lexicographically, meaning that if two groups have equal values for the first
column, then they are sorted by the second columns. If they are equal in the second column, they
are sorted by the third column, and so on for however many order by columns are provided.

41 Queries

Core Database Tuning Guide

The Security Analytics Core database is unique in that the groups of results returned by a query
may each have many values for a selection. For example, it is possible to select all meta that
matches a meta type and organize it into groups, and it is possible to use the distinct() function to
return groups of distinct meta values. If an order by clause references one of the fields in the
group that multiple values, the sorting order is applied as follows:

1. Within each group, the fields with multiple matching values are ordered by the ordering
clause

2. All the groups are sorted by comparing the first occurrence of the ordered field found within
each group

The order by clause is only available in queries that have a group by clause, since groups are
required to organize the meta fields into distinct records. If you wish to sort an arbitrary query as
if there were no grouping applied, use group by sessionid. This ensures that results are returned
in groups of distinct sessions or events.

Group by clauses are naturally returned in ascending group key order, but an order by clause can
be used to return groups in a different order.

If an order by columns does not specify asc or desc, the default ordering is ascending.

Examples:

select countdistinct(ip.dst) GROUP BY ip.src ORDER BY countdistinct

(ip.dst)

select countdistinct(ip.dst) GROUP BY ip.src ORDER BY countdistinct

(ip.dst) desc

select countdistinct(ip.dst),sum(size) GROUP BY ip.src ORDER BY sum

(size) desc, countdistinct(ip.dst)

select sum(size) GROUP BY ip.src, ip.dst ORDER BY ip.dst desc

select user.dst,time GROUP BY sessionid ORDER BY user.dst

select * GROUP BY sessionid ORDER BY time

Values call
The index provides a low-level values function to access the unique meta values that have
been stored in the index. This function allows developers to perform more advanced operations
on groups of unique meta values.

Values call parameter syntax:

values-params = field-name-param, space, where-param, space,

size-param, {space, flags-param} {space, start-meta-param}, {space, end-

Queries 42

Core Database Tuning Guide

meta-param}, {space, threshold-param}, {space, aggregate-func-param},

{space, aggregate-field-param}, {space, min-param}, {space, max-param} ;

field-name-param = "fieldName=", meta-key ;

where-param = "where=", where-clause ;

size-param = "size=", ? integer between 1 and 1,677,721 ? ;

start-meta-param = ? same as query message ?

end-meta-param = ? same as query message ?

flags-param = "flags=", {values-flag, {"," values-flag} } ;

values-flag = "sessions" | "size" | "packets" | "sort-total" |

"sort-value" | "order-ascending" | "order-descending" ;

threshold-flag = "threshold=", ? non-negative integer ? ;

aggregate-func-param = "aggregateFunction=", { aggregate-func-flag } ;

aggregate-func-flag = "count" | "sum" ;

aggregate-field-param = "aggregateFieldName=", meta-key ;

min-param = "min=", meta-value ;

max-param = "max=", meta-value ;

The values call provides the function of returning a set of unique meta values for a given meta
key. For each unique value, the values call can provide an aggregate total count. The function
used to generate the total is controlled by the flags parameter.

Parameters

The following table describes the function of each parameter.

Parameter Function

fieldName This is the meta key name for which you retrieve unique values. For

example, if fieldName is ip.src, this function returns the unique source

IP values in the collection.

where This is a where clause which filters the set of sessions for which the

unique values are returned. For example, if the fieldName is ip.src, and

the where clause is ip.src = 192.168.0.0/16, only values in the range of

192.168.0.0 to 192.168.255.255 are returned. For information on the

where clause syntax, see Where Clauses.

43 Queries

Core Database Tuning Guide

Parameter Function

size The size of the set of unique values to return. This function is optim-

ized to return a small subset of the possible unique values in the data-

base.

id1, id2 These optional parameters limit the scope of the search for unique val-

ues to a specific region of the meta database and the index. Setting the

id1 and id2 parameters to a limited range of the meta database is very

important to running searches quickly on large collections.

flags Flags control how the values are sorted and totaled. Flags are

described in the following Values Flags section.

threshold Setting the threshold parameter allows the values call to short-cut col-

lection of the total associated with each value once the threshold is

reached. By providing a threshold, the caller can reduce the amount of

index and meta items that must be retrieved from the database. If the

threshold parameter is omitted or set to 0, this optimization is not used.

aggregateFunction Optional parameter used to change the default behavior from counting

sessions, packets, or size to counting or summing the numeric field

defined by aggregateFieldName. Both parameters must be specified

when either is defined. Pass either sum or count to specify which

behavior to perform.

Queries 44

Core Database Tuning Guide

Parameter Function

aggregateFieldName The meta field to perform the aggregateFunction on. Both aggreg-

ateFunction and aggregateFieldName parameters must be specified

when the aggregate flag is set. Performing a values call using one of

the aggregate functions can be significantly slower than a values call

that collects totals of sessions, packets, or size. The reason for this is

that each session that matches the where clause must be retrieved from

the meta database. This scan causes a large portion of the query to be

I/O bound on the meta DB volumes. The time taken to run an aggregate

values call is linearly proportional to the number of sessions that match

the where clause.

min, max The minimum and maximum value that should be returned from the

call. These parameters are used to iterate (or page) over an extremely

large number of values, typically more values than could be returned

from a single call. Primarily used in conjuction with the flags sort-

value,sort-ascending such that the highest value returned

would be used in a subsequent call as the min parameter value. The

values are exclusive. If min=“rsa" was specified and rsa was a valid

value, rsa would not be returned, but the next highest value would be

returned.

Values Flags

The flags parameter controls how the values call operates. There are three groups of flags that
correspond to the different modes of operation as shown in the following table.

45 Queries

Core Database Tuning Guide

Flag Description

sessions,

size, pack-

ets

The values call allows you to specify one of these flags to determine how the

total for each value is calculated. If the flag is sessions, the values call returns a

count of sessions that contain each value. If the flag is size, the values call totals

the size of all sessions that contain each unique value, and reports the total size

for each unique value. If the flag is packets, the values call totals the number of

packets in all sessions that contain each unique value, and then reports that total

for each unique value.

sort-total,

sort-value

These flags control how results are sorted. If the flag is sort-total, the result set

is sorted in order of the totals collected. If the flag is sort-value, the results are

returned in order of the sorting order of the values.

order-

ascending,

order-des-

cending

These flags control the sort order of the result set. For example, if sorting by

total in descending order, the values with the greatest total are returned first.

Values Call Example

The values call is used extensively by the Navigation view in Security Analytics. The default
view generates calls that look like this:

/sdk/values id1=198564099173 id2=1542925695937 size=20 flag-

s=sessions,sort-total,order-descending threshold=100000 fieldName=ip.src

where="time=\"2014-May-20 13:12:00\"-\"2014-May-21 13:11:59\""

In this example, the Navigation view requests unique values for ip.src. It requests unique values
of ip.src in the time range given. It asks for the count of sessions that match each ip.src, and the
results are the top 20 ip.src values when sorted by the number total count of sessions in
descending order. In addition, the Navigation view has a meta ID range in order to provide an
optimization hint to the query engine.

Queries 46

Core Database Tuning Guide

Msearch call
The index provides a low-level msearch function to perform text searches against all meta
types. This type of search does not require users to define their queries in terms of known meta
types. Instead, it searches all parts of the database for matches. Msearch is used by the
Events view text search. See the Filter and Search Results in the Events View topic in the
Investigation and Malware Analysis Guide for detail on the accepted search forms and
examples.

msearch parameters:

msearch-params = search-param, {space, where-param}, {space, limit-

param}, {space, flags-param};

search-param = "search=", ? free-form search string ? ;

where-param = "where=", ? optional where clause ? ;

limit-param = "limit=", ? optional session scan limit ? ;

flags = "flags=", {msearch-flag, {"," msearch-flag} };

msearch-flag = "sp" | "sm" | "si" | "ci" | "regex" ;

The msearch algorithm works as follows:

1. A set of sessions is identified from the index by finding the intersection of three sets:

l (Set 1) All sessions in the database

l (Set 2) Sessions that match the where clause parameter

l (Set 3) If the si flag is specified, sessions that indexed values that match the search
string parameter.

2. If the search specifies the sm parameter, all meta from the set of sessions identified in step 1
is read and scanned to see if it matches the search string parameter. The meta will be read
from the service nearest to the point where the search was executed. For example, if the
search is performed on a Broker, the meta may be read from the Concentrator nearest to the
broker, but if the search is performed on an Archiver the meta will be read from the
Archiver itself.

3. If the search specifies the sp parameter, all raw packet or log entries from the set of
sessions identified in step 1 is read and scanned to see if it matches the search string
parameter. The packets will be read from the service nearest to the point where the search
was executed. For example, if the search is performed on a Concentrator, the packet data

47 Queries

Core Database Tuning Guide

will be read from the Decoder, but if the search is performed on an Archiver, the packet data
will be read from the Archiver itself.

4. Matches from step 2 and step 3 are returned as they are found, up to the point where the
limit parameter is reached. Limit specifies the maximum number of sessions for which
meta and packet data will be scanned. If limit is not specified, the entire set of sessions
determined in step 1 is scanned.

Msearch Flags

Flag Description

sp Scans raw packet data

sm Scans all meta data

si Does index lookups for all search parameters before scanning meta

ci Performs a case insensitive search. Returned results are case-pre-

serving.

regex Treats the search parameter as a regular expression. Only a single

regular expression can be specified, but the regular expression may

be arbitrarily complex.

Msearch Index Search Mode

Using the index search mode, specified by using the si flag, causes results to be returned
significantly faster than any other mode. The main limitation of this mode is that it only returns
matches on text terms that match value-indexed meta values.

l The si parameter must be combined with the sm flag. The si parameter implies the search
only matches indexed meta.

l The si parameter can be used with regex searches, however only text indexed values will
match. IP addresses and numbers will not match the regex.

Msearch Tips

l Always use the where clause to specify a time range for the search.

l To search for IP address ranges, specify them in the where clause.

Queries 48

Core Database Tuning Guide

l Use the limit parameter when not using the index search mode. Without it, there will be an
extremely large amount of data read by the meta and packet databases.

Stored Procedures
The query and values calls provide more low-level search functionality. For more advanced
use cases, server-side stored procedures exist.

Use of Quotes in Query Syntax
The query parser does not care whether you use single or double quotes within a query
statement. A single- or double-quoted value is treated as text meta.

The query parser attempts to make sense of whatever you put in the statement. It is not very
strict about what it will accept.

For example:

reference.id=4752

This clause identifies sessions that have a reference.id meta value that has a _numeric_ value of
4752.

reference.id='4752' or reference.id="4752"

This clause identifies sessions that have a reference.id meta value that has a _string_ value of
"4752".

However, the query engine implicitly compares numbers and strings that look like numbers as
equal when the values are semantically the same. So it works with either syntax.

For most efficient performance, however, it is always a good idea to construct the queries such
that the query syntax matches the data types generated by the parser.

For example, if the parser is creating reference.id as a numeric data type (such as uint32 or
uint64), then use the numeric syntax.

If the parser is creating reference.id as a text data type, then use the string syntax.

49 Queries

Core Database Tuning Guide

Index Customization
This topic describes how to use the custom index file to customize the index. Each Security
Analytics Core service is installed with a default index configuration that is intended to cover
the index needs for most users of the product. However, it is possible to index new meta keys in
order to use the index with custom content that generated custom meta.

Index Configuration File Locations
The index customization is accomplished by making changes to the custom index file. The
location of this file is /etc/netwitness/ng/index-<servicename>-custom.xml, where
<servicename> corresponds to the name of the product that you are customizing. For example,
the Concentrator custom index file is /etc/netwitness/ng/index-concentrator-custom.xml.

Concentrator products also include a file that describes the default index configuration:
/etc/netwitness/ng/index-concentrator.xml. This file is useful as a template to show how the
custom index file is formatted.

If you make customizations to the index in the custom index file, those customizations override
any conflict with the default index configuration.

You can make changes to the custom index file while the service is running. When the service
receives an index save command, the changes to the custom index file are read and applied to
the index.

Note: Changes to the index can only be applied to new incoming data. Data cannot be
retroactively reindexed with a new custom index configuration, except with a very time
consuming reindex procedure.

Index configuration entries
The custom index file is an XML document. The root element of this document is the language
element, and inside there is an elements per meta key to describe each custom index. Each
element of the custom index configuration looks like this:

<key name="did" description="Decoder Source" level="IndexValues" form-

at="Text" valueMax="100" />

Index Customization 50

Core Database Tuning Guide

Definitions for each attribute in this element: Attribute | Description -|- name | The name of the
meta key that will be indexed description | A human-readable description for the meta type level
| The type of index that will be created for this meta key valueMax | The maximum unique
values that will be stored for this key per slice format | The format of the data held by all meta
items with this meta key name.

The next few sections examine these parameters in greater detail.

Meta names

The meta name used by the index refers to the meta key name present within every meta item in
the meta database. These meta names are generated by the Decoders when parsing. Parsers can
choose to generate meta with any meta key name. Therefore, the custom index allows you to
choose which of the meta items generated by the Decoder are indexed.

Meta key names can be 16 characters long, and contain only letters or the '.' character.

Data Types

When the Decoder generates meta items, it assigns a data type. Each parser can choose the data
type of the meta it generates. However, there are recommended and standard data types for each
of the default meta keys. For example, ip.src and ip.dst are stored as the IPv4 meta type, and
alias.host is stored as the Text meta type. Each parser must agree on the data format for each
meta key generated by the Decoder.

When adding a custom index to the Concentrator, the data type of the custom index must match
the format of the data generated by the Decoder. If the types do not match, the Concentrator
attempts conversions of the meta generated into the type specified for the custom index.
However, these conversions sometimes fail, and the resulting index can produce undefined
results.

Likewise, when many Decoders and Concentrators work together as part of a Security Analytics
installation, they must all agree on the types for each meta key. Conflicts of meta types between
Security Analytics Core services can lead to undefined behavior.

The following table shows the metadata types supported by the Security Analytics Core
services.

Type Size in bytes Description

Int8 1 Signed 8-bit integer

UInt8 1 Unsigned 8-bit integer

Int16 2 Signed 16-bit integer

UInt16 2 Unsigned 16-bit integer

51 Index Customization

Core Database Tuning Guide

Type Size in bytes Description

Int32 4 Signed 32-bit integer

UInt32 4 Unsigned 32-bit integer

Int64 8 Signed 64-bit integer

UInt64 8 Unsigned 64-bit integer

UInt128 16 Unsigned 128-bit integer

Float32 4 32-bit floating point number, single precision

Float64 8 64-bit floating point number, double precision

TimeT 8 Unix epoc timestamp

Binary 1-255 Arbitrary binary data

Text 1-255 UTF-8 Encoded text data

IPv4 4 IPv4 address bytes

IPv6 16 IPv6 address bytes

MAC 6 MAC Address bytes

When defining a custom index, it is important to use the best data type for the meta. For
example, never store IP addresses as Text, since the Text representation takes more bytes than
the IPv4 representation.

Index Levels

There are three levels, or types, of indexing: IndexNone, IndexKeys, and IndexValues.

IndexNone

This type of custom index is not really an index at all. Custom index entries with the IndexNone
level exist only to define and document the meta key. IndexNone entries can be used in custom
Decoder indices to enforce a specific data type for a meta key across all the parsers on a
Decoder.

IndexKeys

Index Customization 52

Core Database Tuning Guide

This type of custom index indicates that the index only keeps track of sessions that contain meta
items with this meta key name. However, it does not index any unique values in the meta
database for the meta key.

Key-level indices take much less storage space, memory, and CPU time to manage, but they
require a lot more work from the query engine when you perform query or values operations
using them.

If used in a where clause, a meta key indexed at the key level can only be used to resolve
operations such as exists or !exists.

IndexValues

This type of custom index keeps sessions that contain each individual unique value for the meta
key. This type of index is also known as a "full index".

This type of index is needed for efficient processing of most where clauses, and for use of this
meta key as the fieldName parameter of a values call.

Value Max

Value max is a parameter that can have a very significant impact on the accuracy and
performance of a Value-level index.

As a Decoder parses packets or logs, it is allowed to create meta of any type with any value.
Usually, these meta items are created from data copied directly out of the packet or log.
Therefore, anyone can create unique meta values in response to nearly any event.

The performance of the index is directly dependent on the number of unique values it has found
for each meta key. As the number of unique values increases, the rate at which new meta is
indexed can decrease, and the speed with which queries are completed decreases. Since any
person can influence the creation of unique meta values, it is possible for any person to affect
the performance of the index.

The value max parameter limits the number of unique values that can enter the index. Therefore,
a malicious user cannot flood the system with a large number of unique values in an attempt to
make the Security Analytics system not work.

It is important to set a value max on any meta key that may have its value influenced directly by
incoming packets or logs.

The value max applies only to values added since the last index save operation.

The limit for how high value max can be set varies from version to version and on the amount of
RAM available to the Security Analytics Core service. As of 10.3, the recommended ceiling for
value max is 5,000,000 for any meta key. If there are a lot of custom indices, then the value max
may have to be lower.

53 Index Customization

Core Database Tuning Guide

maxLength

The max length parameter is used exclusively on the word meta type. It must match the
corresponding setting for /decoder/parsers/config/token.max.length on the Log Decoder
service that is generating word token metas. The index uses the maxLength to properly interpret
search terms fed into the msearch SDK function.

Index Customization 54

Core Database Tuning Guide

Optimization Techniques
This topic describes optimization techniques for the Security Analytics Core database. The
Security Analytics Core database is set up to work with a wide variety of work loads by default.
However, like any database technology, its performance can be very sensitive to both the nature
of the data being ingested, and the nature of the searches that the user performs against the
database.

Thresholds
Thresholds are a useful optimization that can have a dramatic effect on how fast results are
returned to the Security Analytics Navigation tool. Thresholds are applied to the values call. For
more information about the values call, see Queries.

The threshold defines a limit to how much of the database is retrieved from disk in order to
produce a count. For most queries, the number of sessions that match the where clause is very
large. For example, selecting all the log events for just one hour running at 30,000 events per
second matches 108,000,000 sessions.

RSA introduced the threshold feature based on the observation that most cases where a count of
sessions is required do not have to have results that are accurate down to the very last session.
For example, when looking at the top 20 IP addresses present over the past hour, it is not very
important if the report indicates that an IP value matched 10,000,000 or 10,000,001 sessions
exactly. The estimate is good enough. In these scenarios, we can make an estimate for the value
of the count returned when our count exceeds the threshold parameter. When the threshold is
reached, the remaining count is estimated, and the results are sorted based on the estimated
counts, if necessary.

Complex Where Clauses
The amount of time it takes for the Security Analytics Core database to produce a result is
dependent on the complexity of the query. Queries that align directly with the indexes present on
the meta can be resolved quickly, but it is very easy to write queries that cannot be resolved
quickly. Sometimes, queries that cannot be returned quickly can be processed by the Core
database and the index differently to produce much more satisfying results for the customer.

It is useful to know the relative cost of each part of the where clause. A clause with a high cost
takes longer to execute. In the following table, the query operations are ordered in terms of their
relative cost, from lowest to highest.

55 Optimization Techniques

Core Database Tuning Guide

Operation Cost

exists, !exists Constant

=, != Logarithmic in terms of the number of

unique values for the meta key, linear in

terms of the number of unique elements

that match a range expression

<, >, <=, >= Logarithmic in terms of unique value

lookup, but more likely to be linear since

the expression matches a large range of val-

ues

begins, ends, contains Linear in terms of the number of unique val-

ues for the meta key

regex Linear in terms of the number of unique val-

ues for the meta key with a high per-value

cost

ANDs and ORs

When constructing a where clause, keep in mind that constructing many terms using the AND
operator can have a beneficial affect on the performance of a query. Any time that multiple
criteria can be used to filter down the set of sessions matching the where clause, there is less
work for the query to do. Likewise, each OR clause creates a larger set of sessions to process
for each query.

As a general rule of thumb, the more AND clauses in the query, the faster it completes, but the
more OR clauses in the query, the slower it completes.

Use Case: Match a Large Subnet

It is common for users to construct queries that attempt to include or exclude a class-A subnet.
This type of query is common because the users are trying to include or exclude some large
portion of their internal network from their investigation.

It is a problem for the query engine to resolve this query using the ip.src or ip.dst indices alone.
The issue arises from the fact that a where clause such as this:

ip.src = 10.0.0.0/8

Optimization Techniques 56

Core Database Tuning Guide

Actually must be interpreted as:

ip.src = 10.0.0.0 || ip.src = 10.0.0.1 || ip.src = 10.0.0.2 || ... ||

ip.src = 10.255.255.255

Thus, the index could have to create a where clause with more than 16 million terms.

The solution to this problem is to use the Decoder to tag common networks of interest using
application rules. For example, you could create meta with an application rule that looks like
this:

name=internal rule="ip.src = 10.0.0.0/8" order=3 alert=network

This rule creates meta in the meta key network with the value internal for any IP address in the
10.0.0.0/8 network.

The where clause could be expressed as:

network = "internal"

Assuming there is a value-level index on the network meta, the index does not have to expand
this query into anything more complex, and the sessions matching the desired subnet are matched
very quickly.

Use Case: Substring Matching

Using the operators begins, ends, contains, and regex in a where clause can be very slow if
there are a large number of unique values for the meta key. Each of these operators is evaluated
independently against each unique value. For example, if the operator is regex, the regex must
be run independently against each unique value.

To work around this, the most effective strategy is to reorganize the meta such that the user does
not have to use a substring match.

For example, consider if the users are attempting to find the host name within a URL
somewhere in the session. The users might write a where clause such as:

url contains 'www.rsa.com'

In this scenario, it is likely that the url meta key contains one unique value for every session that
was captured by the Decoder, and therefore has a huge number of unique values. In this case,
the contains operation is slow.

57 Optimization Techniques

Core Database Tuning Guide

The best approach is to identify the part of meta they are attempting to match, and move the
matching into the content parser.

For example, if there is meta being generated for each URL, a parser could also break down the
URL into its constituent components. For example, if the Decoder generates URL meta with the
value http://www.rsa.com/security_analytics, it could also generate alias.host meta
with the value www.rsa.com. Queries could be performed using:

alias.host = 'www.rsa.com'

Since the substring operator is no longer needed, the query is much faster.

Index Saves
The Core index is subdivided by save points, also known as slices. When the index is saved, all
the data in the index is flushed to disk, and that portion of the index is marked as read-only.
Saves serve two functions:

l Each save point represents a place where the index could be recovered in the case of a power
failure.

l Periodically saving can ensure that the portion of the index that is actively being updated does
not grow larger than RAM.

Save points have the effect of partitioning the index into independent, non-overlapping segments.
When a query must cross over multiple save points, it must re-execute parts of the query and
merge the results together. This ultimately makes the query take longer to complete.

By default, for Security Analytics 10.5 and later installations, a save is performed on the Core
index every time 600,000,000 sessions are added to the database. This interval is set by the index
configuration parameter save.session.count. For more information, see Index Configuration
Nodes.

Older versions of Security Analytics Core, or systems that have been upgraded from Security
Analytics versions prior to 10.5, use a time-based save schedule that saves the index every 8
hours. You can see the current save interval by using the scheduler editor in the Security
Analytics Administration UI for the service. The default entry looks like this:

hours=8 pathname=/index msg=save

By adjusting the interval, you can control how often saves are created.

Optimization Techniques 58

Core Database Tuning Guide

Affects of Increasing the Save Interval

By increasing the save interval, save points are created less frequently, and therefore fewer
save points exist. This has a positive effect on query performance, because it becomes less
likely that queries traverse slices, and when slices do have to be traversed, there are not as
many to traverse.

There are downsides to increasing the save interval though. First, the Concentrator is more likely
to hit the valueMax limit set on any of the indices. Second, the recovery time in the event of a
forced shutdown or power failure is increased. And third, the aggregation rate may suffer if the
index slice grows too large to fit in memory.

Affects of Decreasing the Save Interval

By decreasing the save interval, it is possible to avoid hitting the valueMax limits while
maintaining a full value index for meta that contains a large number of unique values.
Decreasing the save interval does have a detrimental impact on query performance, since more
slices are created.

Working with Value Max
The value max limitation can be frustrating to customers who want to index all possible unique
meta. Unfortunately that is not possible in the general case. Meta keys exist that can have
arbitrary random data from anywhere on the Internet, and all unique values cannot be indexed.

However, it is possible to work around some of the limitations of value max by using key level
indices instead of value indices. Key level indices are not influenced by value max.

It is possible to use the Navigation view on a meta key indexed at the key level. The database
uses value level indices in the where clause where possible, but meta database scanning is used
to resolve unique values for the values call. This approach works well when the where clause
provides an effective filter to limit search scope to a small number of sessions, perhaps less than
10,000 sessions.

In cases where the value max is reached, the users can perform a database scan on their queries
to ensure no relevant values were dropped. This feature is accessible in the Investigator 9.8
client via the right-click menu on the Navigation view. Although the meta database scan takes a
long time, it reassures the customer that they are not missing anything in their reports.

Parallelize Workloads
When the customer is using a lot of reports, ensure that they are making full use of the parallel
executing options within Reporting Engine. Likewise, ensure that the number of
max.concurrent.queries is appropriate for the hardware.

59 Optimization Techniques

Core Database Tuning Guide

The Security Analytics Navigator view has the ability to run the components of the Investigator
view in parallel, which can have a significant impact on the perceived performance of the
Security Analytics Core service.

Index Rebuild
In rare cases, a Core service might benefit from an index rebuild. Examples:

l The Security Analytics Core service has index slices created by a very old version of the
product and has not rolled out any data in more than six months.

l The index was configured incorrectly, and the customer wants to re-index all meta with a
new index configuration.

l The traffic load into the Core service was very light, and the save interval was large, causing
more slices than needed to be generated.

In these cases, an index rebuild may provide performance improvements. To do so, you must
send the message reset with the parameter index=1 to the /decoder folder on a Decoder, the
/concentrator folder on a Concentrator, or the /archiver folder on an Archiver.

Be aware that a full reindex takes days to complete on a fully loaded Concentrator, and possibly
weeks on a full Archiver.

Scaling Retention
There are several ways to improve the retention of the Security Analytics Core database.
Retention refers to the period of time that is covered by data stored in the database.

The first step in analyzing retention is to determine which part of the database is the limiting
factor in terms of retention. The packet, meta, and session databases provide the
packet.oldest.file.time, meta.oldest.file.time, and session.oldest.file.time stats in the
/database/stats folder to show the age of the oldest file in the database. The index provides the
/index/stats/time.begin stat to show the oldest session time stored in the index.

Increasing Packet and Meta Retention

The primary mechanism for increasing retention on these databases is adding more storage. If
adding more storage to the Security Analytics Core service is not possible, then it may be
necessary to use the compression options on the packet and meta database to reduce the amount
of data each database writes.

If meta retention is a concern, you may want to remove unneeded content from the Decoder
generating meta. Many parsers generate meta that the customer does not need to store long term.

Optimization Techniques 60

Core Database Tuning Guide

Increasing Index Retention

Usually the index has longer retention than the databases, but with a complex custom index the
index retention may be shorter. Usually the easiest course of action is to remove unneeded
value-level indices from the custom config, or perhaps override some of the default value-level
indices with key-level indices.

It is also possible to scale the index by adding additional index storage. However, the index
storage should be extended using solid-state drives only.

Scaling Horizontally
Starting in version 10.3, Concentrators and Archivers have the ability to be clustered using group
aggregation. Group aggregation allows a single Decoder to feed sessions to multiple
Concentrators or Archivers in a load-balanced manner. Group aggregation enables the query and
aggregation workload to be split among an arbitrarily large pool of hardware.

For more information, see the Group Aggregation topic in the Deployment Guide.

Grouping Workloads
The Security Analytics Core database works much better when all the users of the system are
working within the same region of the database. Since the database is fed data from the Decoder
with a first-in-first-out scheme, data in the database typically is clustered together according to
the time it was captured and stored. Therefore, the database works better when all users are
working on the same time period of data.

It is not always possible for all users to be working on the same time period simultaneously. The
Security Analytics Core database can handle that use case, but it is slow to do so because it
must alternate between having different periods of time in RAM. It is not possible to have all of
the time periods in RAM at the same time. Typically less than 1 percent of the database and less
than 10 percent of the index fits in RAM.

To make Security Analytics work for the customer, it is important to get the customer to
organize their users into groups that tend to work on the same time ranges. For example, users
who do daily monitoring over the most recent data may be one user group. Perhaps there is
another user group that does queries further back in time as part of an investigation. And perhaps
another set of users do reports over large periods of time. Attempting to serve all the groups
from a single database can lead to frustration and long wait times for results to be produced.
However, if the different use cases can be spread to different concentrator hardware, the
perceived performance can be much better. In this case, it may be beneficial to utilize more
Concentrator service with less RAM and CPU power rather than a single large and expensive
concentrator intended to meet all needs.

61 Optimization Techniques

Core Database Tuning Guide

Cache Window
Consider this sequence of events:

1. At 9:00 a.m., user "kevin" logs in to a Concentrator and requests a report on the last one hour
of collection time.

2. The Concentrator retrieves reports for the time range 8:00 a.m. to 9:00 a.m.

3. At 9:02 a.m., user "scott" logs in to the same Concentrator and also requests a report on the
last one hour of collection time.

4. The Concentrator retrieves reports for the time range 8:02 a.m. to 9:02 a.m.

Notice that even though both users were looking at time ranges that were close together, the
work done by the Concentrator to produce reports for Kevin could not be re-sent to Scott, since
the time ranges are slightly different. The Concentrator had to re-calculate most of the reports
for Scott.

The setting cache.window.minutes on the /sdk node allows you to optimize this situation. When
a user logs in, the point in time representing the most recent data for the collection only moves
forward in increments of the the number of minutes in this setting.

For example, assume the /sdk/config/cache.window.minutes is 10. Re-evaluating the above
action changes the sequence of events.

1. At 9:00 a.m., user "kevin" logs in to a Concentrator and requests a report on the last one hour
of collection time.

2. The Concentrator retrieves reports for the time range 8:00 a.m. to 9:00 a.m.

3. At 9:02 a.m., user "scott" logs in to the same Concentrator and also requests a report on the
last one hour of collection time.

4. The Concentrator retrieves reports for the time range 8:00 a.m. to 9:00 a.m.

5. At 9:10 a.m., user "scott" re-loads the reports for the last one hour of collection time.

6. The Concentrator retrieves reports for the time range 8:10 a.m. to 9:10 a.m.

The report returned in step 3 falls in the cache window, so it is returned instantaneously. This
gives Scott the impression that the Concentrator is very fast.

Thus, larger cache.window settings improve perceived performance, at the cost of introducing
small delays until the latest data is available to search.

Optimization Techniques 62

Core Database Tuning Guide

Time Limits
When a query is running on the Security Analytics Core database for a very long time, the
Core service dedicates more and more CPU time and RAM to that query in order to get it to
complete faster. This can have a detrimental impact on other queries and aggregation. In order to
prevent lower privileged users from using more than their share of the Core service resources, it
is a good idea to put time limits on the queries run by normal users.

63 Optimization Techniques

Core Database Tuning Guide

Appendix A: Statistics
This topic describes statistics used to monitor system operation. The Core services provide a
very large number of statistics for monitoring the operation of the system. Some of them are
useful for monitoring performance, while some of them exist for monitoring the operation of the
system or for debugging purposes.

Statistics in /database/stats
The following table shows the meaning of the statistics in /database/stats​.

Statistic Meaning

meta.bytes, packet.bytes, ses-

sion.bytes

The total size of data (in bytes) stored in each database

meta.first.id, packet.first.id, ses-

sion.first.id

The first meta ID, packet ID, and session ID, respect-

ively, stored in the database

meta.last.id, packet.last.id, ses-

sion.last.id

The last meta ID, packet ID, and session ID, respect-

ively, stored in the database

meta.oldest.file.time, pack-

et.oldest.file.time, ses-

sion.oldest.file.time

The creation date of the oldest file in each database

meta.rate, packet.rate, session.rate The count of the number of meta, packet, and session

objects added to each database over the last second

meta.total, packet.total, ses-

sion.total

The total number of meta, packet, and session objects

within each database

meta.volume.bytes, pack-

et.volume.bytes, ses-

sion.volume.bytes

The approximate total volume size (in bytes) for all dir-

ectories used by each database

meta.free.space, packet.free.space,

session.free.space

The approximate total unused space (in bytes) across all

directories used by each database

Appendix A: Statistics 64

Core Database Tuning Guide

Statistics in /index/stats
The following table shows the meaning of the statistics in /index/stats ​.

Statistic Meaning

checkpoint.page, checkpoint.summary The last objects stored the last time an index

save was created (debugging)

index.bytes An approximate measure of how much disk

space is required by index files

index.last.load.time The timestamp when the current index con-

figuration was loaded from the index con-

figuration files

memory.used An approximate measure of how much memory

is occupied by the index

page.first.id, summary.first.id The first page and summary object stored in the

index (debugging)

page.last.id, summary.last.id The last page and summary object stored in the

index (debugging)

page.total, summary.total Number of pages and summaries in the index

(debugging)

session.first.id The ID of the first session indexed

session.last.id The ID of the last session indexed

sessions.since.save The number of sessions currently held by the cur-

rent index slice

values.added The number of unique values added to the cur-

rent index slice

slices.total The number of slices in the index

65 Appendix A: Statistics

Core Database Tuning Guide

Statistic Meaning

time.begin The oldest time meta indexed

time.end The most recent time meta indexed

Statistics in /sdk/stats
The following table shows the meaning of the statistics in /sdk/stats ​.

Statistic Meaning

cache.window.time.begin The beginning of the current time enforced by

cache.window.minutes

cache.window.time.end The end of the current time enforced by

cache.window.minutes

queries.active The number of queries currently executing in the

index

queries.queued The number of queries waiting for execution

values.calls The number of calls made to the "values" func-

tion since the process was started

values.calls.cached The number of calls made to the "values" func-

tion that were resolved by the values call result

cache

Per-query statistics
SDK operations, such as query and values, provide information about their execution status in
/sdk/config/stats/queries/<handleid>, where <handleid> is a unique identifier for the query
operation.

The following table shows the meaning of per-query statistics​.

Appendix A: Statistics 66

Core Database Tuning Guide

Statistic Meaning

channel.path This stat provides a link to the connection channel

over which the operation is communicating. This

channel is used to communicate results back to the

client.

query.type The type of operation being performed, such as

queries or values

query The complete set of parameters given to the query

query.progress The percentage of the query execution that has

completed

query.status A message describing what stage of the query exe-

cution is currently occurring

running.since The time at which the query began execution

user The user name that executed the query

67 Appendix A: Statistics

Core Database Tuning Guide

Appendix B: Index Inspect
The Security Analytics Core database index has a built-in debugging feature called inspect that
provides detailed information about the composition of its indexes. The index inspect feature is
located at /index/inspect in every Core service configuration tree. Services that do not actually
have an index, like Broker, do not have the /index/inspect feature.

Parameters
Options

Type: String
This parameter may be set to the value all-slices to collect inspect information about
every slice in the index. If it is not set, information on the current, most recently created
slice is returned.

Caution: Collecting information on all slices may take a very long time to complete if there
are many index slices.

Response
Inspect returns many rows of key value pairs that represent the state of the index.

Slice Summary

The first row returned for every slice is a summary with the following values.

session1 The first session ID indexed in the slice

session2 The last session ID indexed in the slice

meta1 The first meta ID in the first session indexed in the slice

meta2 The last meta ID in the last session indexed in the slice

Per-Index Summary

There will be per-index summary rows returned for each index. Only value-level indexes are
reported.

key The meta key name for the index

Appendix B: Index Inspect 68

Core Database Tuning Guide

pathname The path on disk to this index

values The number of unique values stored in this index

summaries The number of summary entries occupied by this index in the summary.db file

pages The number of page entries occupied by this index in the page.db file

sessions The number of sessions that had a value that was inserted into this index

size The cumulative "size" meta values for all sessions that inserted a value into this

index

packets The cumulative count of packets for all sessions that inserted a value into this

index

summary1 The first summary ID used by this index

summary2 The last summary ID used by this index

session1 The first session ID referenced by this index

session2 The last session ID referenced by this index

Slice Summary Footer

The last row in each inspect report contains cumulative statistics for all the indexes in the slice.

totalKeys The number of indexed meta types

totalValues The number of unique values tracked by all indices in this slice

totalMemory An approximate total of the memory needed to open this index slice

69 Appendix B: Index Inspect

	Security Analytics Core Database Introduction
	Security Analytics Products Covered by this Guide
	Frequently-Used Terms
	Security Analytics Core Database History
	Core Database Strengths and Weaknesses

	Basic Database Configuration
	Find Help within the Core Service
	Packet, Meta, and Session Storage
	Index Storage

	Tiered Database Storage
	Archiver

	Manifests
	Search Historical Manifests

	Advanced Database Configuration
	Database Configuration Nodes
	packet.dir, meta.dir, session.dir
	packet.dir.warm, meta.dir.warm, session.dir.warm
	packet.dir.cold, meta.dir.cold, session.dir.cold
	packet.file.size, meta.file.size, session.file.size
	packet.files, meta.files, session.files
	packet.free.space.min, meta.free.space.min, session.free.space.min
	packet.index.fidelity, meta.index.fidelity
	packet.integrity.flush, meta.integrity.flush, session.integrity.flush
	packet.write.block.size, meta.write.block.size, session.write.block.size
	packet.compression, meta.compression
	packet.compression.level, meta.compression.level
	hash.algorithm
	hash.databases
	hash.dir

	Index Configuration Nodes
	index.dir
	index.dir.warm
	index.dir.cold
	index.slices.open
	page.compression
	save.session.count

	SDK Configuration Nodes
	max.concurrent.queries
	max.pending.queries
	cache.window.minutes
	max.where.clause.cache
	query.level.1.minutes, query.level.2.minutes, query.level.3.minutes
	query.timeout
	max.where.clause.sessions
	max.query.groups
	packet.read.throttle
	cache.dir, cache.size
	parallel.values
	parallel.query

	Per-User Configuration Nodes
	query.prefix
	query.level
	query.timeout
	session.threshold

	Scheduler
	Example

	Rollover
	Synchronous Rollover
	Asynchronous Rollover
	Example

	Queries
	Query Syntax
	Where Clauses
	Query Operators
	Text Values
	IP Addresses
	MAC Addresses
	Date and Time Expressions
	Special Range Values
	Group By Clause (since 10.5)
	Order By Clause (since 10.5)

	Values call
	Parameters
	Values Flags
	Values Call Example

	Msearch call
	Msearch Flags
	Msearch Index Search Mode
	Msearch Tips

	Stored Procedures
	Use of Quotes in Query Syntax

	Index Customization
	Index Configuration File Locations
	Index configuration entries
	Meta names
	Data Types
	Index Levels
	Value Max
	maxLength

	Optimization Techniques
	Thresholds
	Complex Where Clauses
	ANDs and ORs
	Use Case: Match a Large Subnet
	Use Case: Substring Matching

	Index Saves
	Affects of Increasing the Save Interval
	Affects of Decreasing the Save Interval

	Working with Value Max
	Parallelize Workloads
	Index Rebuild
	Scaling Retention
	Increasing Packet and Meta Retention
	Increasing Index Retention

	Scaling Horizontally
	Grouping Workloads
	Cache Window
	Time Limits

	Appendix A: Statistics
	Statistics in /database/stats
	Statistics in /index/stats
	Statistics in /sdk/stats
	Per-query statistics

	Appendix B: Index Inspect
	Parameters
	Response
	Slice Summary
	Per-Index Summary
	Slice Summary Footer

