
NwConsole User Guide
for Version 11.1

Copyright © 1994-2018 Dell Inc. or its subsidiaries. All Rights Reserved.

Contact Information
RSA Link at https://community.rsa.com contains a knowledgebase that answers common
questions and provides solutions to known problems, product documentation, community
discussions, and case management.

Trademarks
For a list of RSA trademarks, go to www.emc.com/legal/emc-corporation-trademarks.htm#rsa.

License Agreement
This software and the associated documentation are proprietary and confidential to Dell, are
furnished under license, and may be used and copied only in accordance with the terms of such
license and with the inclusion of the copyright notice below. This software and the
documentation, and any copies thereof, may not be provided or otherwise made available to any
other person.

No title to or ownership of the software or documentation or any intellectual property rights
thereto is hereby transferred. Any unauthorized use or reproduction of this software and the
documentation may be subject to civil and/or criminal liability.

This software is subject to change without notice and should not be construed as a commitment
by Dell.

Third-Party Licenses
This product may include software developed by parties other than RSA. The text of the license
agreements applicable to third-party software in this product may be viewed on the product
documentation page on RSA Link. By using this product, a user of this product agrees to be fully
bound by terms of the license agreements.

Note on Encryption Technologies
This product may contain encryption technology. Many countries prohibit or restrict the use,
import, or export of encryption technologies, and current use, import, and export regulations
should be followed when using, importing or exporting this product.

Distribution
Dell believes the information in this publication is accurate as of its publication date. The
information is subject to change without notice.

March 2018

Contents

Access NwConsole and Help 5
Prerequisites 5

Access NwConsole 5

View Help 6

View a List of Commands 6

View Detailed Help on a Command 7

View a List of Help Topics 8

View a Specific Help Topic 8

Quit NwConsole 9

Basic Command Line Parameters and Editing 10
Basic Command Line Parameters 10

Line Editing 10

Connecting to a Service 12

Monitoring Stats 16

Useful Commands 17
Feeds 17

create 17

stats 18

dump 18

Converting Packet DB Files to PCAP 18

Packets 19

Verifying Database Hashes 20

SDK Content Command 21

SDK Content Command Examples 23

Commands Used for Troubleshooting 28
whatIsWrong 28

dbcheck 29

topQuery 29

NwConsole User Guide

netbytes 30

netspeed 30

4

NwConsole User Guide

Access NwConsole and Help
RSA NetWitness Console, also known as NwConsole, is a multi-platform terminal application
that provides powerful tools and command line access to Core services, such as Decoder, Log
Decoder, Concentrator, Broker, and Archiver. While most users complete their tasks and
investigations through the NetWitness Suite user interface, some advanced users, such as
administrators and developers, require direct access to the services without going through the
user interface. NwConsole enables you to enter commands from the command line or run
multiple commands from a file.

This topic describes how to access NwConsole and to view the internal help within NwConsole.

Extensive help information is available within RSA Security Analytics console, also known as
NwConsole. You can access this help from the Security Analytics command line.

Prerequisites
All NetWitness Suite appliances have theNwConsole application installed. You can also install
it on Windows, Mac, and CentOS to connect and interact with a Core service.

NwConsole is available from the command line on a NetWitness Suite appliance. If you are
accessing a Core appliance remotely, you need to have the RSA NetWitness Console
application installed on a Windows, Mac, or CentOS machine. To obtain the RSA NetWitness
Console application installer, contact RSA Customer Care.

Access NwConsole
To run NwConsole from the command line on a NetWitness Suite appliance or on a terminal
emulator, at the <$> prompt, type NwConsole (Linux) or nwconsole (Windows). The
actual command is NwConsole, but Windows is not case sensitive. RSA NetWitness Console
is displayed as shown in the following example.

Last login: Thu Sep 24 14:00:42 on console

 usxx<username>m1:~ <username>$ NwConsole

 RSA NetWitness Suite Console 10.6.0.0.6105

 Copyright 2001-2015, RSA Security Inc. All Rights Reserved.

 Type "help" for a list of commands or "man" for a list of manual pages.

 >

5 Access NwConsole and Help

NwConsole User Guide

View Help
NwConsole provides help on individual commands as well as help on specific topics.

Caution: To get the latest information, view the command and help topics within NwConsole.

View a List of Commands

To view a list of available commands and their descriptions, at the (>) prompt, type help. The
following example shows a list of available commands.

> help

 Local commands:

 avro2nwd - Convert AVRO files to NWD files

 avrodump - Display schema and contents of AVRO file (for debugging)

 blockspeed - Tests various write block sizes to determine best setting

 compileflex - Compile all flex parsers in a directory

 createflex - Create a flex parser that matches tokens read from a file

 dbcheck - Perform a database integrity check over one or more

 session, meta, packet, log or stat db files

 diskspeed - Measures the speed of the disk(s) mounted at a specified

 directory

 echo - Echos the passed in text to the terminal

 encryptparser - Encrypt all parsers in a directory

 feed - Create and work with feed files

 fmanip - Manipulate a file with XOR and check for embedded PEs

 hash - Creates or verifies hashes of database files

 help - Provides help information for recognized console commands

 history - Displays, erases or executes a command in the command

 history

 httpAggStats - Tests HTTP aggregation and reports statistics as it

 continues

 log - Perform operations on a log database

 logParse - Parse line delimited logs on stdin and post results to

 stdout

 logfake - Create a fake log pcap file

 lua - Execute a lua script

 makec3 - Generate C3 Test Data

 makepcap - Convert packet database files to pcap or log files

 man - Displays a list of topics or opens a specific manual page

Access NwConsole and Help 6

NwConsole User Guide

 on a topic

 metaspeed - Tests read performance over an existing meta db

 netbytes - Display statistics on network interface utilization

 nwdstrip - Convert full NWD file into just session and meta file

 pause - Wait for user input when running a script file

 reindex - reindex a collection

 sdk - Execute SDK commands based on the C SDK library, type "sdk

 help" for more information

 sleep - Sleeps for the specified milliseconds

 timeout - Globally change the timeout for waiting for a response from

 a service

 tlogin - Open a trusted SSL connection to an existing service

 topQuery - Returns the top N longest running queries from the audit

 log (either a file or from the log API)

 vslice - Validate index slices

Remote commands (executed on the connected service, see "login"):

 login - Connect to a remote service. Once connected, type help to

 see commands available for remote execution.

For detailed help, type "help <command>"

>

View Detailed Help on a Command

To view detailed information about a command, type help <command>. The following
example shows help for the logParse command after typing help logParse.

For detailed help, type "help <command>"

> help logParse

Usage: logParse {in=<pathname>} {indir=<pathname>} [out=<pathname>]

 [content=<c2|c3>] [device=<device,[device...]>]

 [path=<log-parsers-config-path>] [metaonly] [srcaddr=<src

 address>] [srcaddrfile=<filename,IP Address>]

Parse line delimited logs on stdin and post results to stdout

 in - The input source file. "in=stdin" means interactive typing of

 log.

 indir - The input source files parent directory

 out - The output file or output file parent directory if input is

 set by indir. If not specified, use stdout as output.

7 Access NwConsole and Help

NwConsole User Guide

 content - Content version, either c2 or c3. Default is c2.

 device - Comma delimited device list specifying devices that is

 enabled. Default enable all devices.

 path - The logparsers configuration path. Default will find

 configuration file like logdecoder.

 metaonly - The output will only contains parsed meta, otherwise will

 print log message after metas.

 srcaddr - The source address of the all the logs

 srcaddrfile - The source address for logs in one input file, in the format

 filename,ipaddress

>

View a List of Help Topics

To view a list of help topics, type man. The following example shows a list of help topics.

> man

List of topics:

 Introduction

 Connecting to a Service

 Monitoring Stats

 Feeds

 Converting Packet DB Files to PCAP

 Packets

 Verifying Database Hashes

 SDK Content

 SDK Content Examples

 Troubleshooting

Type "man <topic>" for help on a specific topic, partial matches are acceptable

>

View a Specific Help Topic

To view help about a specific topic, type man <topic>. The following example shows the
Packets help topic after typing man Packets.

Type "man <topic>" for help on a specific topic, partial matches are acceptable

 > man Packets

 Packets

Access NwConsole and Help 8

NwConsole User Guide

 =======

The *packets* command can be used to generate a pcap or log file based on a

list of Session IDs, a time period or a where clause. The command is quite

flexible and can be used on any running service that has access to the raw

data from a downstream component. Before running the command, you must first

login to a service and then change directory to the appropriate sdk node,

(e.g., "cd /sdk"). Unlike the *makepcap* command, which only works on the

local file system, this command is meant to be used on a remote service.

 login ...

 cd /sdk

 packets where="service=80 && time='2015-03-01 15:00:00'-'2015-03-01

 15:10:00'" pathname="/tmp/march-1.pcap"

Write 10 minutes of HTTP only packets from March 1st, to the file

/tmp/march-1.pcap. All times are in UTC.

 packets time1="2015-04-01 12:30:00" time2="2015-04-01 12:35:00"

 pathname=/media/sdd1/packets.pcap.gz

Write all packets between the two times to a gzip compressed file at

/media/sdd1/packets.pcap.gz

 packets time1="2015-04-01 12:30:00" time2="2015-04-01 12:35:00"

 pathname=/media/sdd1/mylogs.log

Write all logs between the two times to a plaintext file at

/media/sdd1/mylogs.log. Any pathname ending with .log indicates that the

format of the output file should be plaintext line-delimited logs.

>

Caution: To get the latest information, view the command and help topics within NwConsole.

Quit NwConsole
To exit the NwConsole application, type quit at the command line.

9 Access NwConsole and Help

NwConsole User Guide

Basic Command Line Parameters and Editing
markdown file is ManIntroduction.htm. Format doesn't work, but content is newer. I need to add
new stuff to formatted, then export to HTML to add into Nwconsole.

NwConsole is like a Swiss army knife; there are all kinds of tools buried underneath its
command line interface. NwConsole is multi-platform; executables are available for CentOS (it
already ships on appliances), Windows, and Mac.

Basic Command Line Parameters
Here are some basic command line parameters:

 l To run a set of commands from a file:
NwConsole -f /tmp/somefile.script

 l To pass in a list of commands from the command line:

NwConsole -c <command1> -c <command2> -c <command3>

This is not necessarily recommended except for very simple scripts. The bash interpreter can
make mincemeat out of quoted strings if you do not escape properly. If you are having non-
obvious errors passing via command line, switch over to reading from a file to see if that fixes
the issues.

 l Normally, console exits after running commands passed via a file or command line, but if you
want to keep the interactive prompt open after the commands are executed, pass -i on the
command line.

 l And of course, you can just run NwConsole and type the commands in the console window.

Line Editing
You can use the keys in the following table when editing a command.

Key Descripton

Ctrl-U Clears the current line

Ctrl-W Deletes the word that the cursor is on

Ctrl-A Moves the cursor to the beginning of the line

Ctrl-E Moves the cursor to the end of the line

Basic Command Line Parameters and Editing 10

NwConsole User Guide

Key Descripton

Up arrow Displays the previously executed command

Down arrow Displays the command executed after the current command (only valid if the

up arrow has been pressed)

Left arrow Moves the cursor to the previous character

Right arrow Moves the cursor to the next character

Tab Provides context sensitive completion of most commands and their parameters.

The Tab key is very helpful for editing.

For example, to view the Connecting to a Service help topic, at the command

line, you can type mancon and then press the Tab key. NwConsole

completes the command for you: man Connecting to a Service

Press enter to run the command and view the topic.

history Displays a numbered list of previous commands

history

execute=#

Executes a previous command, which is also equivalent to typing !#

 For example, !1 executes the previous command.

history

clear

Clears all command history

history

erase=#

Erases a specific command from the history buffer. History is automatically

stored from one session to the next.

11 Basic Command Line Parameters and Editing

NwConsole User Guide

Connecting to a Service
To connect and then interact with a Security Analytics Core service (Decoder, Concentrator,
Broker, Archiver, and so on), you must first issue the login command. You must have an
account on that service. You can type help login at any time for more information. Here is
the syntax of the login command:

login <hostname>:<port>[:ssl] <username> [password]

For example: login 10.10.1.15:56005:ssl someuser

If you do not include the password, it prompts you and does proper password masking.

If you have set up proper trust between NwConsole and the endpoint, you can use the
tlogin command and avoid having to enter a password. Setting up trust is beyond the scope of
this documentation, but it involves adding NwConsole's SSL cert to the endpoint via the send
/sys peerCert op=add --file-data=<pathname of cert> command. You
must first use a normal login with the proper permissions before you can add a peer cert for
subsequent trusted logins.

Once connected, you can interact with the endpoint service through a virtual file system. Instead
of files, what you are looking at are the nodes of that service. Some nodes are folders and have
child nodes, forming a hierarchical structure. Each node serves a purpose and all of them support
a subset of commands like info and help. The help message returns information about the
commands each node supports. When you first log on, you are on the root node, which is the path
/, just like a Linux or Mac system. To see a list of nodes under /, type the ls command.

All services have nodes like sys and logs. To interact with the /logs API, you can first send
the help command to the /logs node. To do this, you must use the send message, which has
this syntax:

Usage: send {node pathname} {message name} [name=value [name=value]]

 [--file-data=<pathname>] [--string-data=<text>] [--binary-data=<text>]

 [--output-pathname=<pathname>] [--output-append-pathname=<pathname>]

 [--output-format={text,json,xml,html}]

Sends a command to a remote pathname. For remote help, use "send <pathname>help"

for details.

 pathname - The node pathname to retrieve information on

 message - The command (message) to send

 parameters - Zero or more name=value parameters for the command

 --file-data - Loads data from a file and send as either a BINARY

 message or as a PARAMS_BINARY message if other

Connecting to a Service 12

NwConsole User Guide

 parameters exist

 --string-data - Sends text as a STRING message type

 --binary-data - Send text as either a BINARY message type or as a

 PARAMS_BINARY message type if other parameters

 exist

 --output-pathname - Writes the response output to the given pathname,

 overwriting any existing file

 --output-append-pathname - Writes the response output to the given pathname,

 will append output to an existing file

 --output-format - Writes the response in one of the given formats,

 the default is text

So, to send a help message, you would send this:

send /logs help

And your response would look something like this:

 description: A container node for other node types

 security.roles: everyone,logs.manage

 message.list: The list of supported messages for this node

 ls: [depth:<uint32>] [options:<string>] [exclude:<string>]

 mon: [depth:<uint32>] [options:<uint32>]

 pull: [id1:<uint64>] [id2:<uint64>] [count:<uint32>] [timeFormat:<string>]

 info:

 help: [msg:<string>] [op:<string>] [format:<string>]

 count:

 stopMon:

 download: [id1:<uint64>] [id2:<uint64>] [time1:<date-time>] [time2:<date-

time>] op:<string>

 [logTypes:<string>] [match:<string>] [regex:<string>] [timeFormat:<string>]

[batchSize:<uint32>]

 timeRoll: [timeCalc:<string>] [minutes:<uint32>] [hours:<uint32>]

[days:<uint32>] [date:<string>]

To get more information about a specific message or command, you can specify the
msg=<message name> on the help command as a parameter. For example, look at the pull
message help:

send /logs help msg=pull

 pull: Downloads N log entries

 security.roles: logs.manage

 parameters:

 id1 - <uint64, optional> The first log id number to retrieve, this is mutually

13 Connecting to a Service

NwConsole User Guide

exclusive with id2

 id2 - <uint64, optional> The last log id number that will be sent, defaults to

most recent log

 message when id1 or id2 is not sent

 count - <uint32, optional, {range:1 to 10000}> The number of logs to pull

 timeFormat - <string, optional, {enum-one:posix|simple}> The time format used

in each log message,

 default is posix time (seconds since 1970)

The built in message help says that this command grabs the last N log entries if you leave off id1
and id2. To look at the last 10 log entries this service:

send /logs pull count=10 timeFormat=simple

Almost all of the commands on the service follow this simple format. The only commands that
do not are the ones that require more complicated handshaking, like importing a PCAP to a
Decoder. To import a PCAP, use the NwConsole import command, which takes care of the
complicated communication channel handshaking.

Some parameters are specific to NwConsole's send command and are not actually sent to the
service. You can use these parameters to change the output format of the response, write the
response to a file, or read a file from the local machine and send it to the service. The local
parameters to NwConsole's send command all start with two dashes --.

 l --output-format — This parameter changes the normal output of the command from
plain text to one of these types: JSON, XML, or HTML.

 l --output-pathname — Instead of writing the output to the terminal, it writes it to the
pathname specified (truncates any existing file).

 l --output-append-pathname — This is the same as --output-pathname except
that it appends the output to an existing file (or creates the file if it does not exist).

 l --file-data — Reads in a file and uses it as the command payload. This is useful for
commands like /sys fileEdit. The following example shows how you can send an
updated index-concentrator-custom.xml file using NwConsole:

send /sys fileEdit op=put filename=index-concentrator-custom.xml --file-

data="/Users/user/Documents/index-concentrator-custom.xml"

 l --file-format — When reading an input file with --file-data, this parameter
forces NwConsole to interpret the file as a specific type of input. The allowed enumerations

Connecting to a Service 14

NwConsole User Guide

are: binary, params, param-list, string and params-binary. As an example, to
send a file of application rules (*.nwr) to a Decoder, you can use this command:

send /decoder/config/rules/application replace --file-

data=/path/rules.nwr --file-format=param-list

 l --string-data — Sends the command payload as a string instead of a list of parameters.

 l --binary-data — Sends the command payload as binary instead of a list of parameters.

Example Streaming Query to JSON file (could be a large result set):

send /sdk query size=0 query="select * where service=80 && time='2015-

03-05 13:00:00'-'2015-03-05 13:59:59'" --output-format=json --output-

pathname=/tmp/query.json

One thing to note about the send command is the fact that, by default, there is a timeout of 30
seconds waiting for a response. Some commands (like the query above) may take longer to
receive results. To avoid a premature client-side timeout, you can use the timeout [secs]
command to increase the wait. For instance, timeout 600 would wait 10 minutes for a
response before timing out. Once enacted, it takes effect for all subsequent commands.

To navigate around the virtual node hierarchy of the service, you can use the cd command like
you would on any command shell. This covers the basics of connecting and interacting with a
service. Once you are connected, the help command lists all the commands that you can use to
interact with the endpoint. These commands do not display when you are not connected to
an endpoint.

15 Connecting to a Service

NwConsole User Guide

Monitoring Stats
You can use NwConsole to watch statistics (stats) change on a service in real time. However,
be warned that this can result in a LOT of output. If you are not careful and monitor too many
nodes, the screen scrolls by too quickly to be useful.

As a simple example, if you log on to a Decoder, you can monitor the capture rate in real time.
To do this, issue these commands after connecting to a Decoder:

decoder/stats

mon capture.rate

That is all you need to do! Now, any time the capture rate changes, it outputs into the console
window.

You can add another monitor:

mon capture.avg.size

Now it watches those two stats and outputs those values when they change. You may have
noticed that as you tried to type the second command, the output from the original monitor was
messing up your display. This is the problem with monitoring stats. It is not really meant for
doing more than just watching the stats after the first command is entered.

However, you can stop the monitoring by typing delmons and pressing Enter. Just ignore the
output while you type and it returns you to a proper command prompt. If you want to monitor
many stats at once, you can just give the path of the parent stat folder and it monitors all of the
stats underneath it. For instance, typing mon /decoder/stats or mon . (they are
equivalent) monitors everything. Be prepared for a lot of output! Remember to enter
delmons if it is scrolling too fast.

Monitoring Stats 16

NwConsole User Guide

Useful Commands
The following NwConsole commands are useful when interacting with NetWitness Server Core
services:

 l feed: Enables you to create and work with feed files.

 l makepcap: Converts Packet database (DB) files to PCAP.

 l packets: Retrieves packets or logs from the logged in service.

 l hash: Creates or verifies hashes of database files.

The following sections as well as the NwConsole help and topic information (man) pages,
provide additional information.

Feeds
The feed command provides several utilities for creating and examining feed files. A feed file
contains the definition and data of a single feed in a format that has been precompiled for
efficient loading by a Decoder or Log Decoder. For a complete reference on feed definitions,
see Feed Definitions File in the Decoder and Log Decoder Configuration Guide.

create

feed create <definitionfile> [-x <password>]

The feed create command generates feed files for each feed defined in a feed definition
file. A definition file is an XML document that contains one or more definitions. Each feed
definition specifies a data file and the structure of that data file. The resulting feed files will be
created in the same directory as the definition file with the same name as the data file, but with
the extension changed to .feed (for example, datafile.csv results in datafile.feed). Any existing
files with the target name will be overwritten without a prompt.

 $ ls

 example-definition.xml example-data.csv

 $ NwConsole

 RSA NetWitness Console 10.5.0.0.0

 Copyright 2001-2015, RSA Security Inc. All Rights Reserved.

 Type "help" for a list of commands or "man" for a list of manual pages.

 > feed create example-definition.xml

 Creating feed Example Feed...

 done. 2 entries, 0 invalid records

 All feeds complete.

17 Useful Commands

NwConsole User Guide

 > quit

 $ ls

 example-definition.xml example-data.feed example-data.csv

 $

Optionally, feed files can be obfuscated using the option -x followed by a password of at least
16 characters (no spaces). This will be applied to all feeds defined in the definition file. In
addition to the feed file, a token file will be generated for each feed file. The token file must be
deployed with the corresponding feed file.

feed create example-definition.xml -x 0123456789abcdef

stats

feed stats <feedfile>

The feed stats command provides summary information for an existing, un-obfuscated feed
file. Specifying an obfuscated feed file will result in an error.
 > feed stats example.feed
 Example Feed stats:
 version : 0
 keys count : 1
 values count: 2
 record count: 2
 meta key : ip.src/ip.dst
 language keys:
 alert Text

dump

feed dump <feedfile> <outfile>

The feed dump command generates a normalized, key-value pair listing of an un-obfuscated
feed file. You can use the resulting file to validate a feed file or assist in determining which
records were considered invalid when the feed was created. Specifying an obfuscated feed file
will result in an error. If outfile exists, the command will abort without overwriting the
existing file.

feed dump example.feed example-dump.txt

Converting Packet DB Files to PCAP
You can use the makepcap command to quickly convert any Packet DB file to a generic
PCAP file, preserving the capture time order. This command offers many options (see help
makepcap), but is easy to use. All it really needs is the Packet DB directory (via the
source=<pathname> parameter) to get started.

Useful Commands 18

NwConsole User Guide

Note: You must stop the Decoder or Archiver service before running this command. If you
want to generate a PCAP while the service is running, see the packets command.

makepcap source=/var/netwitness/decoder/packetdb

This command converts every Packet DB file into a corresponding PCAP file in the same
directory. If the disk is almost full, see the next command.

makepcap source=/var/netwitness/decoder/packetdb
dest=/media/usb/sde1

This command writes all of the output PCAPs to the directory at /media/usb/sde1.

makepcap source=/var/netwitness/decoder/packetdb
dest=/media/usb/sde1 filenum=4-6

This command only converts the files numbered 4 thru 6 and skips all other files. In other words,
it converts the Packet DB files: packet-000000004.nwpdb, packet-000000005.nwpdb, and
packet-000000006.nwpdb.

makepcap source=/var/netwitness/decoder/packetdb time1="2015-03-
01 14:00:00" time2="2015-03-02 07:30:00" fileType=pcapng

This command only extracts packets with a timestamp between March 1st, 2015 at 2 PM and
March 2nd, 2015 before or on 7:30 AM. It writes the file as pcapng in the same directory as the
source. All timestamps are UTC.

Packets
You can use the packets command to generate a PCAP or log file based on a list of Session
IDs, a time period, or a where clause. This command is very flexible you can use it on any
running service that has access to the raw data from a downstream component. Before running
the command, you must first login to a service and then change directory to the appropriate
sdk node (for example, cd /sdk). Unlike the makepcap command, which only works on the
local file system, you use this command for a remote service.

login ...

cd /sdk

packets where="service=80 && time='2015-03-01 15:00:00'-'2015-03-01 15:10:00'"

pathname="/tmp/march-1.pcap"

This command writes 10 minutes of HTTP only packets from March 1st to the file /tmp/march-
1.pcap. All times are in UTC.

packets time1="2015-04-01 12:30:00" time2="2015-04-01 12:35:00"
pathname=/media/sdd1/packets.pcap.gz

19 Useful Commands

NwConsole User Guide

This command writes all packets between the two times to a GZIP compressed file at
/media/sdd1/packets.pcap.gz.

packets time1="2015-04-01 12:30:00" time2="2015-04-01 12:35:00"
pathname=/media/sdd1/mylogs.log

This command writes all logs between the two times to a plaintext file at
/media/sdd1/mylogs.log. Any pathname ending with .log indicates that the format of the output
file should be plaintext line-delimited logs.

Verifying Database Hashes
By default, Archiver writes an XML file for every DB file that is written. This XML file ends
with the extension .hash and contains a hash of the file along with other pertinent information.
You can use the hash command to verify that the DB file has not been tampered with by
reading the hash stored in the XML file and then rehashing the DB file to verify that the hash is
valid.

hash op=verify
hashfile=/var/netwitness/archiver/database0/alldata/packetdb/pa
cket-000004880.nwpdb.hash

This command verifies that the Packet DB file packet-000004880.nwpdb still matches the hash
in the XML file packet-000004880.nwpdb.hash. For proper security, the hash file should be
stored somewhere else to prevent the XML file from being tampered with (like write once only
media), but the hash command itself does not care where it is stored.

Useful Commands 20

NwConsole User Guide

SDK Content Command
One of the powerful commands in NwConsole is sdk content. It contains numerous options
to do just about anything, at least as far as extracting content from the NetWitness Suite Core
stack. You can use it to create PCAP files, log files, or extract files out of network sessions (for
example, grab all of the pictures from email sessions). It can append files, have a max size
assigned before creating a new file, and automatically clean up files when the directory grows
too large. It can run queries in the background to find new sessions. It breaks queries into
manageable groups and performs those operations automatically. When the group is exhausted, it
does a requery to get a new set of data for further operations. The list of options for the sdk
content command is very extensive.

Because the command has so many options, this document provides examples of commands for
different use cases.

Before you can run sdk content, there are a few commands (like logging into a service) that
you need to run first. Here are some examples:

 l First connect to a service:
sdk open nw://admin:netwitness@10.10.25.50:50005

 l If you need to connect over SSL, use the nws protocol:
sdk open nws://admin:netwitness@10.10.25.50:56005

 l Keep in mind that you are passing a URL and must URL encode it properly. If the password
is p@ssword, the URL looks like this: sdk open
nw://admin:p%40ssword@10.10.25.50:50005

This also applies to username.

 l Once you log in, you can set an output directory for the commands: sdk output <some
pathname>

 l For command line help, type: sdk content

Before you try some example commands, it is important to understand the sessions
parameter. This parameter is very important and controls how much or how little data you want
to grab (the where clause is also important). The sessions parameter is either a single session id
or a range of session ids. All NetWitness Suite Core services work with session ids, which start
at 1 and increase by 1 for every new session added to the service (network or log session).
Session ids are 64-bit integers, so they can get quite large. To keep it simple, assume we have a
Log Decoder that has ingested 1000 logs and parsed them. On the service, you now have 1000
sessions with session ids from 1 to 1000 (session id 0 is never valid). If you want to operate over
all 1000 sessions, you pass sessions=1-1000. If you only want to operate over the last 100
sessions, you pass sessions=901-1000. Once the command finishes processing session 1000, it
exits back to the console prompt.

21 SDK Content Command

NwConsole User Guide

Many times, however, we do not care about specific session ranges. We just want to run a query
over all of them and process the sessions that match a query. Here are some shortcuts that
simplify this:

 l The letter l (lowercase L) means lower bound or the lowest session id.

 l The letter u means the highest session id. In fact, it actually means the highest session id for
future sessions as well. In other words, if you pass sessions=l-u, this special range
means operate over all the current sessions in the system, but also do not quit processing, and
as new sessions enter the system, process those, too. The command pauses and waits for new
sessions once it reaches the last session on the service. To summarize, the command never
exits and goes into continuous processing mode. It runs for days, months, or years, unless it is
killed.

 l If you do not want the command to run forever, you can pass now for the upper limit. This
determines the last session id on the service at the time the command starts and processes all
sessions until it reaches that session id. Once it reaches that session id, the command exits,
regardless of how many sessions may have been added to the service since the command
started. So, for the example Log Decoder, sessions=200-now starts processing at
session 200 and goes all the way to session 1000 and quits. Even if another 1000 logs were
added to the Log Decoder after the command started, it still exits after processing session
1000.

 l The parameter sessions=now-u means start at the very last session and continue
processing all new sessions that come in. It does not process any existing sessions (except the
last one), only new sessions.

For example commands and what they do, type man sdk content examples or see SDK
Content Command Examples.

SDK Content Command 22

NwConsole User Guide

SDK Content Command Examples
The first NwConsole sdk content command example below is simple and shows all of the
commands that you need to enter. After that, the examples show only the sdk content
commands. The first example creates a log file and grabs the first 1000 logs out of a
Concentrator aggregating from a Log Decoder:

sdk open nw:://admin:netwitness@myconcentrator.local:50005

sdk output /tmp

sdk content sessions=1-1000 render=logs append=mylogs.log
fileExt=.log

This script outputs 1000 logs (assuming sessions 1 thru 1000 exist on the service) to the file
/tmp/mylogs.log. The logs are in a plain text format. The parameter fileExt=.log is
necessary to indicate to the command that we want to output a log file.

sdk content sessions=1-1000 render=logs append=mylogs.log
fileExt=.log includeHeaders=true separator=","

This command grabs the same 1000 logs as above, but it parses the log header and extracts the
log timestamp, forwarder, and other information, and puts them in a CSV formatted file.

Example CSV: 1422401778,10.250.142.64,10.25.50.66,hop04b-LC1,%MSISA-4:
81.136.243.248...

The timestamp is in Epoch time. The includeHeaders and separator parameters can
only be used on NetWitness Suite installs 10.4.0.2 and later.

sdk content sessions=l-now render=logs append=mylogs.log
fileExt=.log includeHeaders=true separator=","
where="risk.info='nw35120'"

This command writes a log file across the current session range, but only logs that match
risk.info='nw35120'. Keep in mind that when you add a where clause, it performs a
query in the background to gather the session ids for export. The query should be run on a
service with the proper fields indexed (which is typically a Broker or Concentrator). In this case,
since you are querying the field risk.info, double-check the service where you run the
command to make sure it is indexed at the value level (IndexValues, see index-concentrator.xml
for examples). By default, most Decoders only have time indexed. If you use any field but time
in the where clause, you need to move the query from the Decoder to a Concentrator, Broker, or
Archiver with the proper index levels for the query. You can find more information on indexing
and writing queries in the NetWitness SuiteCore Database Tuning Guide.

sdk content sessions=l-now render=logs append=mylogs.log
fileExt=.log includeHeaders=true separator=","
where="threat.category exists && time='2015-01-05 15:00:00'-
'2015-01-05 16:00:00'"

23 SDK Content Command Examples

NwConsole User Guide

This command is the same as above, but it only searches for matching logs between 3 PM and 4
PM (UTC) on Jan 5, 2015 that have a meta key threat.category. Again, because this
query has a field other than time in the where clause (threat.category), it should be run
on a service with threat.category indexed at least at the IndexKeys level (the
operators exists and !exists only require an index at the key level, although values work
fine, too).

sdk content sessions=l-now render=logs append=mylogs
fileExt=.log where="event.source begins 'microsoft'"
maxFileSize=1gb

This command creates multiple log files, each one no larger than 1 GiB in size. It prepends the
filenames with mylogs and appends them with the date-time of the first packet/log timestamp in
the file. Some example filenames: mylogs-1-2015-Jan-28T11_08_14.log, mylogs-2-2015-Jan-
28T11_40_08.log and mylogs-3-2015-Jan-28T12_05_47.log. On versions older than Security
Analytics 10.5, the T separator between date and time is a space.

sdk content sessions=l-now render=pcap append=mypackets
where="service=80,21 && time='2015-01-28 10:00:00'-'2015-01-28
15:00:00'" splitMinutes=5 fileExt=.pcap

This command grabs all packets in between the five-hour time period for service types 80 and 21
and writes a PCAP file. Every 5 minutes, it starts a new PCAP file.

sdk content time1="2015-01-28 14:00:00" time2="2015-01-28
14:15:00" render=pcap append=mydecoder fileExt=.pcap
maxFileSize=512mb sessions=l-now

Pay attention to this command. Why? It works for both packets and logs and is extremely fast.
The downside is that you get everything between the two time ranges and you cannot use a
where clause. Again, it starts streaming everything back almost immediately and does not
require a query to run first on the backend. Because everything is read using sequential I/O, it
can completely saturate the network link between the server and client. It starts creating files
prepended with mydecoder and splits to a new file once it reaches 512 MiBs in size.

sdk tailLogs

or (the equivalent command):

sdk content render=pcap console=true sessions=now-u

This is a fun little command. It actually uses sdk content behind the scenes. The purpose of
this command is to view all incoming logs on a Log Decoder. That is it. It is very simple. As
logs come into the Log Decoder (you can run it on a Broker or Concentrator, too), they are
output on the console screen. It is a great way to see if the Log Decoder is capturing and what
exactly is coming into the Log Decoder. This command runs in continuous mode. Do not use it if
the Log Decoder is capturing at a high ingest rate (this command cannot keep up with it).
However, it is helpful for verification or troubleshooting purposes.

sdk tailLogs where="device.id='ciscoasa'"
pathname=/mydir/anotherdir/mylogs

SDK Content Command Examples 24

NwConsole User Guide

This command is the same as above, except it only outputs logs that match the where clause and
instead of outputting to the console, it writes them to a set of log files under
/mydir/anotherdir that do not grow larger than 1 GiB. Obviously, you can accomplish
this with the sdk content command as well, but it is a little less typing with this command if
you like the default behavior.

sdk content sessions=now-u render=pcap where="service=80"
append=web-traffic fileExt=.pcap maxFileSize=2gb
maxDirSize=100gb

This command starts writing PCAPs of all web traffic from the most recent session and all new
incoming sessions that match service=80. It writes out PCAPs no larger than 2 GiBs and if all
the PCAPs in the directory grow larger than 100 GiBs, then it deletes the oldest PCAPs until the
directory is 10% smaller than the max size. Keep in mind that the directory size checking is not
exact and it only checks every 15 minutes by default. You can adjust the number of minutes
between checks by passing cacheMinutes as a parameter, but this only works with Security
Analytics 10.5 and later.

sdk content sessions=79000-79999 render=nwd
append=content-%1%.nwd metaFormatFilename=did

This is a poor person’s backup command. It grabs 1000 sessions and outputs the full content
(sessions, meta, packets, or logs) to the NWD (NetWitness Data Format) format. NWD is a
special format that can be re-imported to a Packet or Log Decoder without reparsing. So
essentially, the original parsed session imports without changes. The timestamp does not change
as well, so if it was originally parsed 6 months ago, the timestamp upon import will be retained
as 6 months ago.

Note: Do not expect great performance with this command, especially with packets.
Gathering the packets for a session involves a lot of random I/O and can drastically slow
down the export. Logs do not suffer as much from this problem (only one log per session), but
behind the scenes this command uses the /sdk content API and this is not a performance
minded streaming API like /sdk packets. So again, do not expect great performance.

The metaFormatFilename parameter is very helpful in this command. If this command is
run on a Concentrator with more than one service, the NWD filenames will be created with the
did meta for each session (the %1% in the append parameter is substituted with the value of
did). Each filename will indicate exactly which Decoder the data came from.

sdk content session=l-u where="service=80,139,25,110"
render=files maxDirSize=200mb cacheMinutes=10

25 SDK Content Command Examples

NwConsole User Guide

This is another fun little command. It works very similar to our old Visualize product if you pair
the output directory with something like Windows Explorer in Icon mode. It extracts files from
all web, email, and SMB traffic. This includes all kinds of files, such as images, zip files,
videos, PDFs, office documents, text files, executables, and audio files. If it extracts malware,
your virus scanner will flag it. Do not worry, nothing will be executed by the command, so it
does not infect the machine (unless you try to execute it yourself). However, it can be useful
because if you do find malware, the filename indicates the session id where it was extracted.
You can then query that session id and see what host the malware possibly infected and take
action. You can filter what gets extracted with the parameters includeFileTypes or
excludeFileTypes (see the command help). For instance, adding
excludeFileTypes=".exe;.dmg;.msi" prevents executables and installers from being
extracted. This command just runs nonstop extracting files from all existing and any new
sessions. After the directory gets littered with more than 200 MiBs of files, it automatically
starts cleaning up the files every 10 minutes.

Note: This command only makes sense for packet sessions, not logs.

sdk content session=1-now where="time='2015-01-27 12:00:00'-'2015-01-27 13:00:00'
&& (service=25,110,80)" subdirFileTypes="audio=.wav;.mp3;.aac;
video=.wmv;.flv;.mp4;.mpg;.swf; documents=.doc;.xls;.pdf;.txt;.htm;.html
images=.png;.gif;.jpg;.jpeg;.bmp;.tif;.tiff archive=.zip;.rar; other=*"
renameFileTypes=".download|.octet-stream|.program|.exe;.jpeg|.jpg" render=files
maxDirSize=500mb

This command extracts files from HTTP and email sessions from a one-hour period and then
groups the extracted files into directories specified by the subdirFileTypes parameter. For
instance, any extracted audio file with the extension .wav, .mp3 or .aac will be placed into the
subdirectory audio, which will be created under the specified output directory. The same goes
for all the other groups specified in that parameter. Some files will also be automatically
renamed based on their file extension. This is handled by renameFileTypes. Any file with
an extension .download, .octet-stream or .program will be renamed to .exe. Files with the
extension .jpeg will be renamed .jpg. Once the top-level directory exceeds 500 MiBs, the oldest
files get cleaned. This command stops at the last session at the time the command started.
sdk search session=l-now where="service=80,25,110" search="keyword='party' sp ci"

This command searches all packets and logs (the sp parameter) for the keyword party. If
party is found anywhere in the packets or logs, it outputs the session id along with the text it
found and the surrounding text for context. The where clause indicates that it only searches web
and email traffic. The ci parameter means that it is a case insensitive search. You can
substitute regex for keyword and it performs a regex search.
sdk search session=l-now search="keyword='checkpoint' sp ci" render=log
append=checkpoint-logs.log fileExt=.log

SDK Content Command Examples 26

NwConsole User Guide

This is an interesting command example. It searches all logs (or it could be packets) for the
keyword checkpoint and if that keyword is seen, it extracts the log to a file checkpoint-
logs.log. There are all kinds of possibilities with this command. Essentially, when a hit is
detected, it hands off the session to the content call. So any parameters you pass to sdk
search that it does not recognize, it just passes along to the content call. This allows the full
capabilities of the sdk content call, but only working on those sessions with content search
hits. With great power comes great responsibility!

27 SDK Content Command Examples

NwConsole User Guide

Commands Used for Troubleshooting
NwConsole provides the following commands that are helpful when troubleshooting Security
Analytics:

 l whatIsWrong: Provides a snapshot of a service's configuration, stats, and failure and
warning logs for a specified past period of time.

 l dbcheck: Performs consistency checking of database files.

 l topQuery: Helps pinpoint queries that are taking an excessively long time to run.

 l netbytes: Troubleshoots the network connections on the current host

 l netspeed: Troubleshoots the connection between the host computer running NwConsole and
the remote computer connected to it using the login command.

The following sections as well as the NwConsole help and topic information (man) pages,
provide additional information.

whatIsWrong
When a service is not working correctly, the reason is usually somewhere in the logs that the
service has written. You can use the whatIsWrong console command to obtain a snapshot of
a service's configuration, stats, and failure and warning logs (with surrounding context logs) for
a specified past period of time, which defaults to the previous seven days. You can save the
results of running whatIsWrong into a specified plain text file. The output of this command can
be a useful starting point to help determine what is currently wrong with a service.

To use the whatIsWrong console command, log on to the service to troubleshoot using the
login command, and run the whatIsWrong command.

Hint: Use help whatIsWrong to see all of the available parameters, including the number
of days/hours to look back for events, the pathname to store results, whether or not to append or
overwrite the results file, and the delimiter to use for log fields. You can also limit the number of
most recent logs used to find context, and you can specify how many context logs per
warning/failure log to retrieve.

Whenever you receive a request for logs for a Core service, you should run the whatIsWrong
command first and use the results collected as a starting point.

Commands Used for Troubleshooting 28

NwConsole User Guide

dbcheck
The dbcheck command is used to perform consistency checking of database files (session,
meta, packets, logs, stats, and so on). This might be necessary when a service cannot start
because of errors in the consistency of the database files. Normally a service would
automatically recover and correct any consistency issues on startup, but there are times when
this does not occur. When a service starts (like Decoder), it typically does not read or open most
database files in order to start quickly. It assumes most files are in a consistent state and only
does a cursory check of the most recently written files. If there are problems, dbcheck can
perform those consistency checks, but ONLY if the service is not running.

Caution: Do not attempt to run this command while a service is running.

For example, you can check a single file:
dbcheck /var/netwitness/decoder/packetdb/packet-000000001.nwpdb

You can also use wildcards to check multiple files:
dbcheck /var/netwitness/decoder/metadb/meta-00000002*.nwmdb

topQuery
The topQuery command can help pinpoint queries that are taking an excessively long time to
run. This command parses the audit logs of a service and returns the top N longest running
queries for the specified time period.

The easiest way to run it is to log on to the service (usually a Broker or Concentrator) and type
topQuery. The default behavior is to return the top 100 longest running queries for the last
seven days.

Type help topQuery for the list of parameters. Here are some additional examples with
explanations:
topQuery hours=12 top=10

This command returns the top 10 queries for the last 12 hours.
topQuery time1="2015-03-01 00:00:00" time2="2015-03-14 00:00:00"

This command returns the top 100 queries between March 1, 2015 and March 14, 2015. Times
are in UTC, not local.
topQuery input=/var/log/messages output=/tmp/top20.txt top=20 user=sauser1

Instead of connecting to a service, it parses the syslog audit messages for the top 20 queries in
the last 7 days, but only for queries executed by user sauser1. It writes the top 20 queries to
/tmp/top20.txt instead of the console screen. The parameter user is a regex, so you can specify
multiple usernames by writing something like user="(sauser1|sauser2)".

29 Commands Used for Troubleshooting

NwConsole User Guide

netbytes
The netbytes command is very useful for troubleshooting the network connections on the
current host. It displays continuous send and receive statistics for all network interfaces. Once
executed, you must press Ctrl-C to exit this command, which also exits NwConsole.

netspeed
The netspeed command is used to troubleshoot the connection between the host computer
running NwConsole and the remote computer connected to it through the login command. You
must supply the amount of bytes to transfer and it will time the speed of the connection. The
netspeed command is very useful for troubleshooting Aggregation performance issues that might
be network related.
login somedecoder:50004 admin ...

netspeed transfer=4g

To troubleshoot the connection between a Concentrator and a Decoder, SSH into the
Concentrator, run NwConsole, and then log on to the Decoder and run netspeed. The output
from the command gives you an indication of the maximum network throughput. If it is much less
than the standard 1 Gbps interface, it could indicate a network issue.

Commands Used for Troubleshooting 30

	Access NwConsole and Help
	Prerequisites
	Access NwConsole
	View Help
	View a List of Commands
	View Detailed Help on a Command
	View a List of Help Topics
	View a Specific Help Topic

	Quit NwConsole

	Basic Command Line Parameters and Editing
	Basic Command Line Parameters
	Line Editing

	Connecting to a Service
	Monitoring Stats
	Useful Commands
	Feeds
	create
	stats
	dump

	Converting Packet DB Files to PCAP
	Packets
	Verifying Database Hashes

	SDK Content Command
	SDK Content Command Examples
	Commands Used for Troubleshooting
	whatIsWrong
	dbcheck
	topQuery
	netbytes
	netspeed

