
Meta Guide

Copyright © 1994-2022 Dell Inc. or its subsidiaries. All Rights Reserved.

Trademarks
RSA, the RSA Logo and EMC are either registered trademarks or trademarks of EMC
Corporation in the United States and/or other countries. All other trademarks used herein are the
property of their respective owners. For a list of EMC trademarks, go to
www.emc.com/legal/emc-corporation-trademarks.htm.

License Agreement
This software and the associated documentation are proprietary and confidential to EMC, are
furnished under license, and may be used and copied only in accordance with the terms of such
license and with the inclusion of the copyright notice below. This software and the
documentation, and any copies thereof, may not be provided or otherwise made available to any
other person.

No title to or ownership of the software or documentation or any intellectual property rights
thereto is hereby transferred. Any unauthorized use or reproduction of this software and the
documentation may be subject to civil and/or criminal liability. This software is subject to
change without notice and should not be construed as a commitment by EMC.

Third-Party Licenses
This product may include software developed by parties other than RSA.

Note on Encryption Technologies
This product may contain encryption technology. Many countries prohibit or restrict the use,
import, or export of encryption technologies, and current use, import, and export regulations
should be followed when using, importing or exporting this product.

Distribution
Use, copying, and distribution of any EMC software described in this publication requires an
applicable software license. EMC believes the information in this publication is accurate as of
its publication date. The information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED "AS IS." EMC
CORPORATION MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
WITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND
SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.
January 2022

Contents

Custom CEF Parser 7
Context 7

Functionality and Characteristics 7

Details 7

Create Custom CEF Parser 8

Add Vendor, Product, Device, and Group Definition 8

Override Existing Device Definitions 8

Override Existing CEF Tag to NetWitness Meta Tag Mapping 8

How metaName Works 9

Override Existing CEF Tag to NetWitness Meta Tag Mapping For a Specific Device 9

Deploy the Custom CEF Parser 10

Live Content Search Tags 11
Context 11

Context Hub Lists in ESA Rules 13
Use CH Lists in ESA Rules 13

OOTB Context Hub Lists 14

How to Update a Context Hub List 16

How to Create a Context Hub List 18

How to Add a Context Hub List as an Enrichment source 19

Create an ESA Rule that Uses a Context Hub list 21

Example of an ESA Rule that Uses a CH list 22

EPL Syntax for whitelists and Blacklists 24

Known Limitations 25

Can the Context Hub lists comparison be case-insensitive? 25

What are the limitations between Basic Rule Builder and Live / Advanced Rules? 25

What happens when you deploy an 11.1 CH List ESA rule to version prior to 11.1? 25

HTTP Lua Parser Options File 26
registerURL 27

splitQuery 27

useOrigIP 27

Meta Guide

refererPath 28

userAgent 28

respReason 28

decompress 29

advanced 30

customHeaders 30

NetWitness Investigation Model 32
Model Hierarchy 33

Threat 33

Examples 33

Attack Phase 34

Malware 35

Identity 35

Examples 36

Authentication 36

Authorization 36

Accounting 37

Behavior Analytics 37

Assurance 38

Examples 38

Governance 39

Risk 39

Compliance 40

Operations 40

Examples 41

Situation Awareness 41

Event Analysis 41

LDAP Parser Options File 43
ports 43

idOnly 44

parseResponses 44

Log Parser Customization 45
Loading Order 45

File Location and Naming 45

Header and Message Duplication 45

4

Meta Guide

Examples 46

Example Code 46

Common Steps 46

Add a New Item 47

Add New Header 47

Add New Message 47

Add New Valuemap 48

Add New Tagval 49

insertBefore and insertAfter 50

Modify an Existing Item 50

Modify Header 50

Modify Message 50

Modify Valuemap 51

Modify Tagval 51

Lua Debugging Tool 53

Mail Lua Parser Options File 54
registerEmailSrcDst 54

parseQuoted 55

registerAddressHosts 55

parseReceived 55

Packet Parsers 56
Context 56

Packet Parsers in NetWitness Suite 56

Discontinued Packet Parsers 64

Phishing Lua Parser Options File 66
Deduplicate Host Registration 67

Check Host Consistency 67

Whitelist Domain 67

Register URL Components 67

Register Entire URL 68

Host Key 68

SMTP Lua Parser Options File 69
registerEmailSrcDst 69

registerAddressHosts 70

5

Meta Guide

errorCodeOnly 70

System Parsers 71
Context 71

System Parsers in RSA NetWitness Platform 71

RSA Threat Content mapping with MITRE ATT&CK™ 74
Introduction to MITRE ATT&CK™ Navigator 74

Generate of MITRE ATT&CK™ Metadata for RSA NetWitness Content 74

Configure RSA NetWitness for Mitre ATT&CK™ Metadata 76

TLD Lua Parser Options File 80
deduplicate 80

localDomains 81

Traffic Flow Lua Parser 82
Introduction 82

Setup 83

Deploy to Network Decoders 83

Reload Parsers: 85

Deploy to Log Decoders (For versions Prior to 11.0) 86

Update XML Files 88

Add Entries to the Index Concentrator File 88

Add Entries to the Table Map File (Log Decoders Only) 88

Update ESA Configuration 89

Tuning 89

Parser Defaults 89

Options File 90

Editing the Options File 91

Option File Details 91

Matching Rules 92

Examples 93

Key Mappings and Defaults 95

Configure Windows Collection 97
Overview 97

Create a User Account for RSA NetWitness Platform 100

6

Custom CEF Parser
This topic discusses and describes the custom CEF parser (cef-custom.xml), that overrides the
standard, base CEF (Common Event Format) parser.

Context
Customers need the ability to customize the key mappings in the base CEF parser, based on their
requirements. If they customize the base CEF parser, their changes will be lost when updating to
the latest content.

The Custom CEF parser maintains the customizations separate from the base parser information.

Functionality and Characteristics
The Custom CEF parser has the following capabilities:

 l You can override the base mapping for a tag to a different meta key.

 l You cannot override the base Header and Message Definitions

 l The Custom CEF parser is a super set of the base CEF parser. This means:

 l Any new tags you define are appended to the set of existing tags in the base parser.

 l If there is a conflict (that is, if the custom parser has a different mapping for a given tag
than the base parser), the custom parser "wins." For all such conflicts, the mapping defined
for the custom parser overrides the mapping in the base parser.

 l If the custom parser definition is invalid and throws an error, the base parser is used, and the
error is reported.

Details
RSA NetWitness Platform Log Decoders version 10.6.4 and newer support both the custom and
base CEF parsers. Upon starting, a Log Decoder service will read both the base CEF parser and
the custom CEF parser. It will override base parser behavior as described above. The Log
Decoder service maintains the mappings in the custom CEF parser even when a newer version
of the CEF parser is downloaded from Live.

The Custom CEF parser supports overriding and adding new entries for the following keys:

 l VendorProducts key

 l ExtentionKey

7 Custom CEF Parser

Meta Guide

 l device2meta key

 l CN and CS keys

Create Custom CEF Parser
This section walks through examples for how to create a custom CEF parser.

Note: A sample CEF custom file is available on RSA Link here:
https://community.rsa.com/docs/DOC-79227

Add Vendor, Product, Device, and Group Definition

To map a log of a product called Product1 from a vendor called Vendor1 to device name
Device1 of Group1, create a new Vender2Device tag in the cef-custom.xml file as shown
here:
<DEVICEMESSAGES>
 <VendorProducts>
 <Vendor2Device vendor="Vendor1" product="Product1" device="Device1"
group="Group1"/>
 </VendorProducts>
 </DEVICEMESSAGES>

Override Existing Device Definitions

To change an existing Vender2Device definition, create an overriding Vender2Device tag in
the cef-custom.xml file as shown below.

The following code is in cef.xml:
<VendorProducts>
 <Vendor2Device vendor="RSA" product="Security Analytics NetFlow Collector"
device="rsaflow" group="Switch"/>

To change the device name from rsaflow to My Own Device, add the following code to cef-
custom.xml:
<DEVICEMESSAGES>
 <VendorProducts>
 <Vendor2Device vendor="RSA" product="Security Analytics NetFlow Collector"
device="My Own Device" group="switch"/>
 </VendorProducts>
</DEVICEMESSAGES>

Override Existing CEF Tag to NetWitness Meta Tag Mapping

To change existing CEF tag to NetWitness Meta key mapping defined in ExtentionKey, create
an overriding ExtentionKey tag in the cef-custom.xml file as shown below.

The following code is in cef.xml:

Custom CEF Parser 8

https://community.rsa.com/docs/DOC-79227

Meta Guide

:
 <ExtensionKey cefName="dst" metaName="daddr"/>
:

To change the CEF tag dst to be mapped to a new key, forward.ip, instead of the original
daddr add the following code to cef-custom.xml:
<DEVICEMESSAGES>
 <ExtensionKeys>
 <ExtensionKey cefName="dst" metaName="forward.ip"/>
 </ExtensionKeys>
</DEVICEMESSAGES>

Note: This change affect all devices.

How metaName Works

The metaName holds the name of the key that represents the log parser key name. The table
map file maps the log parser key to the meta key. The log parser key is used in the parser, and
the meta key is available in Investigator.

The Unified Data Model describes the NetWitness Suite data model, as well as how meta flows
through RSA NetWitness Platform.

Override Existing CEF Tag to NetWitness Meta Tag Mapping For a Specific
Device

To change existing CEF tag to NetWitness Meta key mapping defined in ExtentionKey for just
one device, create a new or an overriding device2meta tag in cef-custom.xml as shown
below.

The following code is in cef.xml:
:
<ExtensionKey cefName="proto" metaName="protocol">
 <device2meta device="rsaflow" metaName="ip_proto"/>
</ExtensionKey>
:

To change the CEF tag proto to be mapped to a new key, proto1, instead of the original ip_
proto for the rsaflow device, add the following code to cef-custom.xml:
<DEVICEMESSAGES>
 <ExtensionKeys>
 <ExtensionKey cefName="proto" metaName="protocol">
 <device2meta device="rsaflow" metaName="proto1"/>
 </ExtensionKey>
 </ExtensionKeys>
</DEVICEMESSAGES>

In this case, you are changing CEF tag proto to be mapped to a new key, proto1, instead of the
original, ip_proto, for device “rsaflow”.

9 Custom CEF Parser

https://community.rsa.com/community/products/netwitness/rsa-content/udm

Meta Guide

Note: Use of this new meta key requires adjustment to the table-map-custom.xml. This
change does not affect any devices other than rsaflow.

Deploy the Custom CEF Parser
Follow these steps to deploy the custom CEF parser.

 1. Create and add mappings to the cef-custom.xml file.

 2. Upload the custom CEF parser to your Log Decoder services. Upload the file to the
following directory, overwriting the existing file:

/etc/netwitness/ng/envision/etc/devices/cef

Note: Use an SSH tool, for example WindSCP, to copy your custom file to the Log
Decoder folder.

 3. If necessary, update the table-map-custom.xml file.

 4. Reload the CEF parser.

Custom CEF Parser 10

Meta Guide

Live Content Search Tags
This topic describes the Advanced Security Operations Center (ASOC) tags. These tags are
used to organize Live content and to deliver an accurate path to information security incident
response. The tags are found in the Live Search view, as:

 l Tags in Security Analytics 10.x

 l Categories in NetWitness Suite 11.x

Context
The objective of a tag is to catalog existing content for deployment according to an incident
response approach. Currently, the model contains the following tags:

 l accounting

 l action on objectives

 l application analysis

 l assurance

 l attack phase

 l audit

 l authentication

 l authorization

 l command and control

 l compliance

 l corporate

 l crimeware

 l data exfiltration

 l data sabotage

 l delivery

 l denial of service

 l event analysis

 l exploit

11 Live Content Search Tags

Meta Guide

 l featured

 l file analysis

 l filters

 l flow analysis

 l identity

 l installation

 l key loggers

 l lateral movement

 l log analysis

 l malware

 l malware analysis

 l operations

 l organizational hazard

 l protocol analysis

 l reconnaissance

 l remote access trojans

 l risk

 l situation awareness

 l spectrum

 l threat

 l vulnerability management

 l web shells

These tags are a part of the investigation model described in the NetWitness Investigation Model.

Note: When you search in Live, note that categories or tags you enter are ORed. That is, if
you search for threat and assurance, all content that is tagged as either threat or assurance
is returned.

Example: Live Search in NetWitness Suite 11.x 11.x, or Live Search in Security Analytics 10.x.

Live Content Search Tags 12

Context Hub Lists in ESA Rules
For RSA NetWitness Platform 11.1 and later, ESA Rules can use Context Hub (CH) Lists as
whitelists and blacklists in their construction and processing. To see details about these rules,
see RSA ESA Rules.

This topic discusses the following:

 l Use CH Lists in ESA Rules

 l OOTB Context Hub Lists

 l How to Update a Context Hub List

 l How to Create a Context Hub List

 l How to Add a Context Hub List as an Enrichment source

 l Create an ESA Rule that Uses a Context Hub list

 l Example of an ESA Rule that Uses a CH list

 l EPL Syntax for whitelists and Blacklists

 l Known Limitations

Use CH Lists in ESA Rules
As of RSA NetWitness 11.1, Context Hub lists can be used in the processing of ESA Rules.

 1. Configure an existing CH list, or create and configure your own CH list. Basically, you need
to add a list of values to either an existing CH list or create your own and then add values.

 2. Configure the CH List within ESA by adding it as an Enrichment source.

 3. Load the CH list into an ESA Rule when you build statements and define the rule.

An advantage of using CH lists in ESA rules, is that from the Respond and Investigate screens
in NetWitness Suite, you can right-click on an item and update the list on-the-fly. For the
selected item, you can add it to or remove it from any of your CH lists.

For details, see the following documentation in the RSA NetWitness Logs & Network 11.x
Documentation space on RSA Link:

 l Investigate: "Manage Context Hub Lists and List Values" topic in Investigate topic in the
NetWitness Investigate User Guide

 l Respond: "Context Lookup Panel" or "Investigate the Incident" topics in the NetWitness
Respond User Guide

13 Context Hub Lists in ESA Rules

https://community.rsa.com/community/products/netwitness/documentation
https://community.rsa.com/community/products/netwitness/documentation
https://community.rsa.com/docs/DOC-81059
https://community.rsa.com/docs/DOC-80685
https://community.rsa.com/docs/DOC-80704

Meta Guide

 OOTB Context Hub Lists
The following Context Hub lists are available out of the box in RSA NetWitness 11.1. They are
delivered empty: users need to configure the lists by adding entries.

Without this configuration step, the rules may not deliver results. You can add entries to the lists
manually, or through import of CSV files. For details, see Configure Lists as a Data source in
the Context Hub Guide.

The following lists are delivered with RSA NetWitness 11.1:

 l User_Whitelist: A list of users that should be excluded from monitoring within rules
configured to use it.

 l User_Blacklist: A list of users that should be included for monitoring within rules configured
to use it.

 l Admin_Accounts: A list of privileged user accounts that should be included for monitoring
within rules configured to use it.

 l Service_Accounts: A list of service accounts that should be included for monitoring within
rules configured to use it.

 l Guest_Accounts : A list of guest user accounts that should be included for monitoring within
rules configured to use it.

 l Domain_Controllers: A list of domain controllers that should be included for monitoring
within rules configured to use it.

 l Host_Whitelist: A list of host names that should be excluded from monitoring within rules
configured to use it.

 l Host_Blacklist: A list of host names that should be included for monitoring within rules
configured to use it.

 l IP_Whitelist: A list of IP addresses that should be excluded from monitoring within rules
configured to use it. CIDR notation and regular expressions may not be used.

 l IP_Blacklist: A list of IP addresses that should be included for monitoring within rules
configured to use it. CIDR notation and regular expressions may not be used.

The following table lists the rules that use each of the CH Lists.

Context Hub Lists in ESA Rules 14

https://community.rsa.com/docs/DOC-80791

Meta Guide

CH List Name ESA Rules that Use the List

User_Whitelist Logins Across Multiple Servers Multiple Account Lockouts
from Same or Different Users

User Login Baseline Multiple Failed Logins
Followed by Successful Login

Failed logins Followed By Successful
Login and a Password Change

Windows Suspicious Admin
Activity: Audit log Cleared

Windows Suspicious Admin Activity:
Firewall Service Stopped

Windows Suspicious Admin
Activity: Network Share
Created

Windows Suspicious Admin Activity:
Shared Object Accessed

User Account Created and
Deleted Within an Hour

User Added to Admin Group Same
User Login OR Same User su sudo

Multiple Failed Logins from
Multiple Diff Sources to Same
Dest

Multiple Successful Logins from
Multiple Diff Src to Diff Dest

User added to administrative
group then SIGHUP detected

Multiple Successful Logins from
Multiple Diff Src to Same Dest

Multiple Failed Logins from
Multiple Users to Same
Destination

Multiple Failed Logins from Same
User Originating from Different
Countries

Failed logins Outside Business
Hours

Insider Threat Mass Audit Clearing

User_Blacklist Direct Login By A Watchlist Account

Admin_Accounts Privilege User Account Password Change

Privilege Escalation Detected

Suspicious Privileged User Access Activity

Multiple Failed Privilege Escalations by the Same User

Multiple Login Failures by Administrators to Domain Controller

Guest_Accounts Multiple Login Failures by Guest to Domain Controller

Host_Whitelist Multiple Failed Logins from Multiple Diff Sources to Same Dest

Multiple Successful Logins from Multiple Diff Src to Diff Dest

Multiple Successful Logins from Multiple Diff Src to Same Dest

Multiple Failed Logins from Multiple Users to Same Destination

Lateral Movement Suspected Windows

15 Context Hub Lists in ESA Rules

Meta Guide

CH List Name ESA Rules that Use the List

Host_Blacklist krbtgt Account Modified on Domain controller

Multiple Login Failures by Administrators to Domain Controller

Multiple Login Failures by Guest to Domain Controller

IP_Whitelist Multiple Failed Logins from Multiple Diff Sources to Same Dest

Multiple Successful Logins from Multiple Diff Src to Diff Dest

Multiple Successful Logins from Multiple Diff Src to Same Dest

Multiple Failed Logins from Multiple Users to Same Destination

IP_Blacklist krbtgt Account Modified on Domain controller

Multiple Login Failures by Administrators to Domain Controller

Multiple Login Failures by Guest to Domain Controller

How to Update a Context Hub List

 1. Go to ADMIN > Services.

The services view is displayed.

 2. Select the Context Hub service and click > View > Config.

The Services Config View of Context Hub is displayed.

 3. Select the Lists tab.

Context Hub Lists in ESA Rules 16

Meta Guide

 4. In the Lists tab, select the list that you wish to update.

 5. In the List Values section, there are controls for adding and removing items, as well as for
importing a list.

17 Context Hub Lists in ESA Rules

Meta Guide

 l To add an entry: click then enter a new value.

 l To remove an entry: select it then click .

 l To import a list, click , then navigate to a CSV file that contains the entries for your

list.

 6. Do either of the following:

 l Click Save to save your changes, or

 l Click anywhere outside the List Values section to discard your changes. You receive a
confirmation message asking you to make sure you want to discard your changes: click
Yes to discard your changes or No to go back to the screen with your unsaved changes.

For more information, see the topic "Configure Lists as a Data source" in the Context Hub
Configuration Guide in RSA NetWitness Platform space on RSA Link.

How to Create a Context Hub List
Creating a list is very similar to updating an existing list.

 1. Go to ADMIN > Services.

 2. Select the Context Hub service and click > View > Config.

 3. Select the Lists tab.

 4. In the Lists tab, click , then enter a name for your list.

Context Hub Lists in ESA Rules 18

https://community.rsa.com/community/products/netwitness

Meta Guide

Note: Make sure the name does not contain spaces. If the name of a list contains spaces,
it cannot be used in an ESA Rule.

 5. Add values to the list, or import an existing list:

 l To add an entry: click then enter a new value.

 l To import a list, click , then navigate to a CSV file that contains the entries for your

list.

 6. Click Save to save your new list.

How to Add a Context Hub List as an Enrichment source
If you add a new CH list, before you can use it in an ESA Rule, you need to add it as an
enrichment source.

 1. Go to CONFIGURE > ESA Rules.

 2. Select the Settings tab, then Enrichment sources.

19 Context Hub Lists in ESA Rules

Meta Guide

 3. Click > Context Hub.

The Context Hub List dialog box is displayed.

 4. Select a list, add a description, and select a column.

 5. Click Save to finish.

Context Hub Lists in ESA Rules 20

Meta Guide

For more information, see the topic "Configure Context Hub List as an Enrichment source " in
the Alerting with ESA Correlation Rules User Guide in RSA NetWitness Platform space on
RSA Link.

Create an ESA Rule that Uses a Context Hub list

 1. Go to CONFIGURE > ESA Rules.

 2. In the Rules tab, click > Rule Builder.

A New Rule tab opens.

 3. In the New Rule tab, enter a name and description.

 4. In the Conditions section, click to open the Build a Statement dialog box.

 5. You can add a whitelist, blacklist, or meta condition. This procedure details adding a list, so
choose either:

 l Add whitelist Condition, or

 l Add Blacklist Condition

In this example, we add a whitelist condition.

 a. Click > Add whitelist Condition.

 b. In the Key column, from the drop-down menu, select a whitelist to use, for example
User_Whitelist.

21 Context Hub Lists in ESA Rules

https://community.rsa.com/community/products/netwitness

Meta Guide

 c. Select a column name from the list, then select an operator and enter the meta value for
the corresponding value field.

 d. Click Save to save the statement and close the dialog box.

 6. Continue defining the rule until it is complete. For details, see "Add a Rule Builder Rule" in
the Alerting Using ESA Guide.

Example of an ESA Rule that Uses a CH list
The Failed Logins Followed By Successful Login Password Change ESA rule uses the User_
Whitelist context hub list.

You can view the syntax in RSA NetWitness Suite:

Context Hub Lists in ESA Rules 22

Meta Guide

 1. Go to CONFIGURE > ESA Rules.

 2. In the Rules tab, select the Failed Logins Followed By Successful Login Password
Change rule and click .

A tab for editing the rule is displayed.

 3. Scroll down to the bottom of the page and click Show Syntax.

The Rule Syntax dialog box is displayed.

 4. Look over the syntax to get a sense of the EPL for this rule. When finished, click Close to
close the Rule Syntax dialog box.

23 Context Hub Lists in ESA Rules

Meta Guide

EPL Syntax for whitelists and Blacklists
A whitelist ("known good") is a list of event meta value to exempt from alerts.

Whitelist Example Syntax (in bold):
@RSAAlert(oneInSeconds=0, identifiers={"user_dst"})
@UsesEnrichment(name="User_Whitelist")
SELECT * FROM

Event (

medium = 32
AND ec_activity = 'Logon'
AND ec_outcome = 'Success'
AND logon_type IN ('2','10','11','12')
AND device_class = 'Windows Hosts'
AND reference_id IN ('4624', '528', '540')
AND user_dst IS NOT NULL
AND NOT EXISTS (SELECT * FROM User_Whitelist WHERE (LIST =
Event.user_dst.toLowerCase()))
AND NOT EXISTS (SELECT * FROM User_Whitelist WHERE (LIST =
Event.user_dst))

);

A Blacklist ("known bad") is a list of event meta value used to trigger alerts.

Blacklist Example Syntax (in bold):
@RSAAlert(oneInSeconds=0, identifiers={"user_dst"})
@UsesEnrichment(name="User_Blacklist")
SELECT * FROM

Event (

medium = 32
AND ec_activity = 'Logon'
AND ec_outcome = 'Success'
AND logon_type IN ('2','10','11','12')
AND device_class = 'Windows Hosts'
AND reference_id IN ('4624', '528', '540')
AND user_dst IS NOT NULL
AND
(

EXISTS (SELECT * FROM User_Blacklist WHERE (LIST
= Event.user_dst.toLowerCase()))
OR
EXISTS (SELECT * FROM User_Blacklist WHERE (LIST
= Event.user_dst))

)

);

Context Hub Lists in ESA Rules 24

Meta Guide

If you create your own rules using CH lists, make sure to the UsesEnrichment() statement, as
shown in the above example:
@UsesEntrichment(name="User_Whitelist")

In this example, we are loading the User_Whitelist into the system for this rule.

Note: It is fine to have the same list loaded (that is, named in multiple UsesEnrichment
statements) in multiple deployed ESA Rules. The system only loads each CH list once.

Use the toLowerCase() function to convert the received meta to all lower case.
Event.user_dst.tolowerCase()

In the above example, the user_dst meta values are converted to all lowercase. If you have
created your CH lists so that all entries are also in all lowercase, your comparison is case-
insensitive.

Known Limitations

Can the Context Hub lists comparison be case-insensitive?

In order to get case-insensitive matching between CH lists and event meta, customers must add
users within the CH lists as all lower case. Context hub lists do not have the ability to make the
entries lower case before performing the match. Additionally, be sure to use the toLowerCase()
function in your rules, so that the meta values are converted to all lowercase for the comparison.

What are the limitations between Basic Rule Builder and Live / Advanced
Rules?

Only able to use a single whitelist or blacklist within the basic rule builder.

What happens when you deploy an 11.1 CH List ESA rule to version prior to
11.1?

The rule will be unable to deploy, it will be disabled, and an error will be written to the log file,
mentioning that the list cannot be found.

25 Context Hub Lists in ESA Rules

HTTP Lua Parser Options File

Caution: RSA strongly suggests that you do not subscribe to the options file. Subsequent
downloads of this file will overwrite all changes that you have made to the file.

Note the following:

 l If you deploy the options file, it can be found in the same directory as parsers:
/etc/netwitness/ng/parsers/.

 l The parser is not dependent upon the options file. The parser will load and run even in the
absence of the options file. The options file is only required if you need to change the default
settings.

 l If you do not have an options file (or if your options file is invalid), the parser uses the default
settings.

Note: The parser will never use both the defaults and customized options. If the options file
exists and its contents can be loaded, then the defaults will not be used at all.

The HTTP_lua_options file contains the following options for controlling the parser:

 l registerURL

 l splitQuery

 l useOrigIP

 l refererPath

 l userAgent

 l respReason

 l decompress

 l advanced

 l customHeaders

To change an option from false to true, edit the line inside the corresponding function, from

return false

to
return true

And similarly to go from true to false.

HTTP Lua Parser Options File 26

Meta Guide

Note: Modifying any of these options requires a service restart to take effect; a simple parser
reload is insufficient.

registerURL
Default value: false

Default behavior is for the host, directory, filename, extension, and query to be registered as
separate meta values with the appropriate keys:

 l alias.host: www.example.com

 l directory: /someDir/

 l filename: somefile.html

 l extension: html

 l query: ?foo=bar

This option instead registers them as a single meta value (individual keys will not be registered
due to redundancy): url: www.example.com/someDir/someFile.html?foo=bar

Note: The registered URL is a reconstructed approximation: it may not be the exact URL that
was clicked on.

splitQuery
Default value: false

Default behavior is for the entire query string from a request to be registered as a single meta
value:
query: alpha=one&beta=two&gamma=three

If this option is enabled, then each element of a query string will be registered as individual meta
values:
query: alpha=one
query: beta=two
query: gamma=three

useOrigIP
Default value: true

Default behavior is to register values from x-forwarded-for headers and the like with index key
orig_ip. If this option is disabled, then values are registered as following:

27 HTTP Lua Parser Options File

Meta Guide

 l hostnames: "alias.host"

 l IPv4: "alias.ip"

 l IPv6: "alias.ipv6"

 l email address: "email"

 l other: "alias.host"

refererPath
Default value: false

Default behavior is to register the value of a "Referer:" header as "referer" meta. If this option
is enabled, then the host, directory, filename, extension, and querystring values are broken out
from Referer and registered individually. In order to avoid duplication, the entire Referer value
will not be registered.

For example, assume the following header:
Referer: http://www.example.com/hello/world.html?foo=bar&one=two

If this option is disabled (default), then the following meta is registered:
Referer: http://www.example.com/hello/world.html?foo=bar&one=two

If enabled, then the following meta is registered:
alias.host: www.example.com
directory: /hello/
filename: world.html
extension: html
query: foo=bar&one=two

Note that if the Split Query String option is also enabled, then the query string is registered
individually (see splitQuery above).

userAgent
Default value: client

Default behavior is to register the value of User-Agent headers with the client index key.

Modifying this value causes User-Agent values to additionally be registered with the specified
key. If the key does not already exist it will be created (normal key name restrictions apply).

Note that this results in duplication of meta. User-agent is registered to both client and the
specified key.

respReason
Default value: true

HTTP Lua Parser Options File 28

Meta Guide

For response codes other than 2xx, default behavior is to register both the status code and reason
phrase together as error meta. For example: error: 404 Not Found.

Disabling this option (setting to false) causes only the response code to be registered. For
example: error: 404

decompress
Default value: 0 (means that decompression will not be performed for any content type, which
maximizes performance)

Decompress content-encoded HTTP responses. Encodings gzip, deflate, chunked, and br (brotli)
are supported. Enabling this option provides visibility into such responses to other parsers.
Decompression incurs a performance penalty which varies depending upon the prevalence of
compressed or encoded HTTP responses seen in the environment. This can be ameliorated to
some extent by choosing to only decompress specific content types.

This is a bit-packed value representing the content types to decompress, where:

 l 0 Decompress OFF

 l 1 application/*

 l 2 audio/*

 l 4 font/*

 l 8 image/*

 l 16 message/*

 l 32 model/*

 l 64 text/*

 l 128 video/*

 l 255 Decompress ALL content types

Just add desired values together. For example:

 l To decompress application (1) and text (64), use 65 (1+64)

 l To decompress application (1), audio (2), and text (64), use 67 (1+2+64)

 l To decompress font (4) and image (8), use 12 (4+8)

The default value of 0 means that decompression will not be performed for any content type,
which maximizes performance. A value of 65 specifies that content-types "application" and
"text" will be decompressed. This should provide a good balance of visibility and performance.
To maximize visibility, a value of 255 will enable decompression of all content types.

29 HTTP Lua Parser Options File

Meta Guide

Enabling a content-type enables all constituent sub-types. For example, "application" includes
"application/octet-stream", "application/javascript", and so on.

NOTES:

 l Only valid for versions 11.0 and newer. This option has no effect on versions 10.x or older as
they do not have the capability to decompress encoded HTTP responses.

 l Has no effect on instances of compression which are not HTTP responses, such as
compressed archive files (such as ZIP and RAR), LZMA streams, and so on.

 l If enabled, then 65 is the suggested value (not 255). That will decompress data that is
typically most interesting to analysts (web pages, executables, javascript), without wasting
resources decompressing larger files that are typically less interesting (images, audio, video,
and so forth).

advanced
Default value: false

If this parameter is enabled, the system performs advanced analysis of HTTP characteristics.
Analysis includes only the first request and first response. Meta is registered to the key
analysis.service.

customHeaders
Provides a mechanism for customers to register HTTP header values to specified keys.

Meta registered will be in addition to—not replacement of—standard meta registration. For
example, if you specify user-agent headers be registered to key foo, user-agent will still also
be registered to alias.host (or alias.ip/alias.ipv6 if appropriate).

Therefore, beware of registering too much data, which could lead to excessive duplication and
thus impact performance and data retention.

Syntax:
["header"] = "key",

Where:

 l header is the desired HTTP header in lowercase. Do not included spaces, colons, and so
forth.

 l key is the desired meta key with which to register the value of header

Notes:

HTTP Lua Parser Options File 30

Meta Guide

 l (missing or bad snippet)

 l Keys are registered as format="Text". Do not use keys indexed in other formats.

31 HTTP Lua Parser Options File

NetWitness Investigation Model
The Investigation model organizes content, with the purpose of delivering an accurate path to
information security incident response. This is a hierarchical model, four levels deep.

Threat
 l Attack Phase

 l Reconnaissance
 l Delivery
 l Exploit
 l Installation
 l Command and Control
 l Action on Objectives

 l Lateral Movement
 l Data Exfiltration
 l Data Sabotage
 l Denial of Service

 l Malware

 l Remote Access Trojans
 l Crimeware
 l Web Shells
 l Key Loggers

Identity
 l Authentication
 l Authorization
 l Accounting
 l Behavior Analytics

 l Entity Monitoring
 l User Mapping

Assurance
 l Governance

 l Active Violations
 l Enforcement

 l Risk

 l Vulnerability Management
 l Organizational Hazard
 l Enterprise Intelligence

 l Compliance

 l Corporate
 l Audit

Operations
 l Situation Awareness
 l Event Analysis

 l Application Analysis
 l Protocol Analysis
 l File Analysis
 l Flow Analysis
 l Filters
 l Log Analysis

NetWitness Investigation Model 32

Meta Guide

The Investigation Feed uses this complete model. The Live Content Search Tags uses the top
two levels of this model.

Model Hierarchy
The objective of each category is to catalog existing and upcoming content with an Incident
Response service-based approach. This is done to maintain mission critical revenue, protect
customer data and branding, as well as to drive information security programs forward in
response maturity.

This content strategy focuses on highlighting key pieces of information within an Enterprise
network and log capturing environment and strives to make this data readily available for
consumption and dissemination. This model aims to aid in the discovery of the preliminary and
often responsive data mining tasks related to information security services.

Threat
The Threat category accounts for content that may directly lead to security incident
investigations when observed on a high value corporate asset or target.

 l Attack Phase

 l Reconnaissance
 l Delivery
 l Exploit
 l Installation
 l Command and Control
 l Action on Objectives

 l Lateral Movement
 l Data Exfiltration
 l Data Sabotage
 l Denial of Service

 l Malware

 l Remote Access Trojans
 l Crimeware
 l Web Shells
 l Key Loggers

Examples

Rule Categorized with meta keys

RDP Traffic Same Source to Multiple
Destinations

Investigation Category (inv.category) = “Threat"
Investigation Context (inv.context) = “Attack Phase"
Investigation Context (inv.context) = “Action on
Objectives"
Investigation Context (inv.context) = “Lateral Movement"

33 NetWitness Investigation Model

https://community.rsa.com/docs/DOC-61633
https://community.rsa.com/docs/DOC-43411

Meta Guide

If the source host in question is identified as being compromised, we can apply this activity to an
attack phase describing pivoting within an environment.

Rule Categorized with meta keys

Zusy Botnet Investigation Category (inv.category) = “Threat"
Investigation Context (inv.context) = “Malware"
Investigation Context (inv.context) = “Remote Access Trojan"

And:
Investigation Category (inv.category) = “Threat"
Investigation Context (inv.context) = “Attack Phase"
Investigation Context (inv.context) = “Command and Control"

The distinction in specific malware situates this content in the family-type malware subtag.

Attack Phase

The intent of attack phase content is to assist incident response practitioners with the escalation,
remediation or classification of observed indicators of compromise activity. This content makes
use of organized threat intelligence and provides a template for incident response operations
tasked at monitoring and detecting indicators in a given dataset. The attack phases are a
procedural set of stages that can be carried out in a variety of ways and over a long period. An
example of attack phase content would be a rule that leverages any of the stages listed below.

 l Reconnaissance: attacker attempts to gain information about the target before the attack
begins.

 l Delivery: the attacker sends the malicious code to the victim.

 l Exploitation: the actual execution of the exploit (only relevant when the attacker uses an
exploit).

 l Installation: the installation of malware onto the affected computer.

 l Command & Control (aka "C2"): the attacker creates a command and control channel in
order to continue to operate internal assets remotely.

 l Action on Objectives: the attacker performs the steps to achieve actual goals inside the
victim’s network. Possible sub-values are as follows:

 l Enumeration

 l Lateral Movement:

 l Data Exfiltration:

 l Data Sabotage:

 l Denial of Service (aka "DDoS"):

NetWitness Investigation Model 34

Meta Guide

Malware

While some known malicious behavior can be attributed to actors that have high-end
intelligence, suspicious behavior can be classified independently of threat portal intelligence.
Taking this approach eliminates the downside of associating a certain behavior to one actor only
and better permits NetWitness Suite to detect new threats or TTP not already defined.

Breaking malware into certain family types helps content engineers to easily update any parsers
or application rules that may reference a new malware variant. Response priorities can differ
amongst organizations in relation to the diversity of malware types.

 l Remote Access Trojans: Remote Access Trojans are an obvious indication that your
network is actively compromised. ASOC Analytical Services recommends high response
priorities be set when a remote access Trojan signature is generated

 l Crimeware: Crimeware is currently a huge part of the Internet. Thus, it deserves a place in a
response program’s standard operational intake and remediation efforts. Heightened
awareness on this malware type would be logical within organizations saturated with
confidential identity and financial-based information.

 l Web Shells: Web shells are an obvious indication there is active compromise. Content
related to web shells should be highlighted and escalated with a sense of urgency.

 l Key Loggers: Key loggers can be packaged up in exploit kits or delivered via spyware. Key
logger content can take the form of intrusion detection signature identification numbers, or
antivirus filename matches based off Virus Total analysis. Examples are aimed at identifying
key loggers that do not solely utilize packet capture.

Identity
The Identity category accounts for content used in the identification or mapping of users and
entities.

Identity content data is heavily utilized in response operations for validation of a particular IP
address and associated end user. It classifies specific evidentiary logs to assist in incident
response, and provides a means to create a baseline for NetWitness Suite.

 l Authentication
 l Authorization
 l Accounting
 l Behavior Analytics

 l Entity Monitoring
 l User Mapping

35 NetWitness Investigation Model

Meta Guide

Examples

Rule Categorized with meta keys

Account Created Investigation Category (inv.category) = “Identity"
Investigation Context (inv.context) = “Authorization"

And:
Investigation Category (inv.category) = “Identity"
Investigation Context (inv.context) = “Assurance"
Investigation Context (inv.context) = “Compliance"
Investigation Context (inv.context) = “Audit"

This rule is used to highlight any accounts created in a collection. The data represented in the t
escalation can be intelligence that is utilized during the corporate auditing process.

Rule Categorized with meta keys

Logon Success Investigation Category (inv.category) = “Identity"
Investigation Context (inv.context) = “Authentication"

And:
Investigation Category (inv.category) = “Identity"
Investigation Context (inv.context) = “Assurance"
Investigation Context (inv.context) = “Compliance"
Investigation Context (inv.context) = “Audit"

This rule is used to highlight any successful account authentications in a collection. The data
represented in this content can also be utilized during the auditing process.

Rule Categorized with meta keys

Multiple Account Lockouts From Same or Different
Users

Investigation Category (inv.category) = “Identity"
Investigation Context (inv.context) =
“Authorization"

Detects multiple account lockouts reported for a single or multiple users within a given time
window.

Authentication

Authentication is the act of giving a user access to secure systems based on user credentials that
imply authenticity. For example, the act of logging onto a system. The ways in which someone
may be authenticated fall into three tags, based on what are known as the factors of
authentication: something the user knows, something the user has, and something the user is.

Authorization

The process of enforcing policy as in available activities, resources, services or overall user
access. For example, elevated privilege, password modifications, distribution lists, and lockout
activity.

NetWitness Investigation Model 36

Meta Guide

Rule Categorized with meta keys

Windows account disabled Investigation Category (inv.category) = “Identity"
Investigation Context (inv.context) = “Authorization"

The above rule tags all accounts disabled in a windows collection.

Accounting

The accounting tag contains content that measures resources utilized by a given user. This can
include any of the following:

 l the amount of data a user has transferred during a session

 l remote access session information

 l file share activity

 l the overall audit of a user footprint

Rule Categorized with meta keys

IP Profiling Investigation Category (inv.category) = “Identity"
Investigation Context (inv.context) = “Accounting"

The above content summarizes activity on a network based on a list of source IP addresses. The
report includes bandwidth utilization, risk alerts, threats, top destinations, OS types, browsers
and clients

Behavior Analytics

The goal of behavior analytics is to determine base lines in user behavior. Base lines are
necessary for determining abnormality within overall network utilization. Behavior Analytical
content helps to promote data science and user- and entity-based analytics. Within NetWitness
Suite, a variety of content has already been utilized in ESA proof of concepts, which visualized
host and user relationships based on MAC address, IPv4, hostname and username data from
specific windows, DHCP and VPN logs.

 l Entity Monitoring: An example of content in this subgroup could be the monitoring of the
various types of administrator accounts on a corporate network. Many organizations have
exclusive user names for these elevated accounts, or bind them to an associated group within
active directory. Collecting, cataloging and embedding this enterprise intelligence within the
content model is essential in maintaining a security program.

 l User Mapping: Between employees adding their own devices to a network, and having
multiple users on a machine, asset management can quickly become a difficult task for
analysts. Any data that represents entity correlation can be stored and cataloged in this

37 NetWitness Investigation Model

Meta Guide

subgroup. The underlying function of this content is to associate and identify end users while
they access the network.

Assurance
The Assurance category contains content that:

 l determines the corporate security posture (governance)

 l adheres to internal and external audits (compliance)

 l manages overall risk within the enterprise (risk)

The governance, risk, and compliance aspects of security are paramount in enabling customers
to alleviate and fulfill industry requirements.

 l Governance

 l Active Violations
 l Enforcement

 l Risk

 l Vulnerability Management
 l Organizational Hazard
 l Enterprise Intelligence

 l Compliance

 l Corporate
 l Audit

Examples

Rule Categorized with meta keys

BYOD Mobile Web Agent Detected Investigation Category (inv.category) = “Assurance"
Investigation Context (inv.context) = “Risk"
Investigation Context (inv.context) = “Compliance"
Investigation Context (inv.context) = “Corporate"

The above rule detects web browsing agents not issued during standard corporate deployments,
adding to the summary of overall risk exposure.

Rule Categorized with meta keys

Proxy Anonymous Services Investigation Category (inv.category) = “Assurance"
Investigation Context (inv.context) = “Risk"
Investigation Context (inv.context) = “Organizational Hazard"

The above rule detects the use of common proxy services, by using a list of domains matched
against alias host.

NetWitness Investigation Model 38

Meta Guide

Rule Categorized with meta keys

Config Changes Investigation Category (inv.category) = “Assurance"
Investigation Context (inv.context) = “Compliance"
Investigation Context (inv.context) = “Audit"

The above rule highlights any modifications to infrastructure in support of Compliance reporting
which may assist during audit.

Governance

Governance content spawns an action for the associated escalation contact. Incident
Management is the determined mindset of this category. Content that enables an act of
remediation, or the education an end user is in this subgroup. An example of this could be
corporate misuse of an asset, which can be carved from an organization's acceptable use or
information security policies.

This subgroup identifies behavior that violates an agreement, either employee or corporate.

 l Active Violations: Misuse of corporate resources. For example, attempting to access a
specific category that is blocked. Or, HR violations based on a data loss prevention
escalation. Violations often warrant an action by the security analyst or response team
escalations to a risk-based organization.

 l Enforcement: Enforcement is designated for content used in the identification of expected
nefarious or delinquent behavior outside of known policies. This subgroup identifies the
behavior that an incident response team should consider in remediation of a given violation.
This could be in the form of user education of investigation escalation.

For example, the release of an enterprise confidential e-mail to someone outside of the
Corporation based on Human Resources or a legal team's request.

Risk

Risk is defined as intelligence one may discover about the Enterprise, which may be useful
within the incident response life-cycle. This can be escalation contact information, server
specifics, or business intelligence.

Rule Categorized with meta keys

Shadow IT User Investigation Category (inv.category) = “Assurance"
Investigation Context (inv.context) = “Risk"

The above content reports on suspected shadow IT usage within the organization.

 l Vulnerability Management: Content such as vulnerable pieces of software, or updates on
patches.

39 NetWitness Investigation Model

Meta Guide

 l Organizational Hazard: This subgroup consists of content that can be attributed to potentially
enabling a compromise. For example, this could be passwords stored in a plain text file on the
desktop of a shared administrator server. Further examples might include users using the
same logon/FOB; this is an operational security failure. Additional content that would
contribute to organizational hazard are instances of shadow IT.

 l Enterprise Intelligence: Content that assesses your network and business processes. The
more you know about the business itself, the better suited you are to defend it. This content
could be related to high value assets or targets, or simply security infrastructure.

Compliance

The Compliance tag contains Information that may be subject to audit, or content that may
contribute to readily accessing answers to important questions. Content here promotes
information transparency about the security program. More importantly, the compliance section
can be considered as information which supports Incident Response. Content examples can
include confirming whether systems adhere to corporate compliance via installed security
controls.

Rule Categorized with meta keys

Access to Compliance Data Investigation Category (inv.category) = “Assurance"
Investigation Context (inv.context) = “Compliance"

This content is used to report on any activity related to the handling of sensitive data or restricted
hosts.

 l Corporate: content related to determining a fully IT-compliant entity or user, and required in
a successful security program. This is also a task that analysts take in response to
disreputable activity. In any instance of escalation, one of the first items to determine is if the
security controls in place have failed.

This type of content can be used to drive security programs forward, more intelligently
occupy IT-security budgets, and enable more rapid incident response.

 l Audit: content that concerns reporting based on industry standards related to fiduciary
auditing compliance (at both the state and federal level).

Operations
The Operations tag accounts for content used to aid in systematic analysis of enterprise data.
This could be in the form of daily reports, dashboard visuals or the management lifecycle of
customer-specific data. Most importantly, it is the content which constitutes the initial inspection
of log and session collections. This is important content to deliver to an analyst because it is a
prerequisite for understanding situational context.

NetWitness Investigation Model 40

Meta Guide

 l Situation Awareness
 l Event Analysis

 l Application Analysis
 l Protocol Analysis
 l File Analysis
 l Flow Analysis
 l Filters
 l Log Analysis

Examples

Rule Categorized with meta keys

Only ACK Flag Set in Session Containing Payload Investigation Category (inv.category) = “Operations"
Investigation Context (inv.context) = “Event Analysis"
Investigation Context (inv.context) = “Protocol Analysis"

Above rule alerts when a session containing payloads have only ACK flag set.

Rule Categorized with meta keys

NGINX HTTP Server Investigation Category (inv.category) = “Operations"
Investigation Context (inv.context) = “Event Analysis"
Investigation Context (inv.context) = “Application Analysis"

The above rule detects web servers running NGINX, which is often used for malicious
purposes.

Rule Categorized with meta keys

Attachment Overload Investigation Category (inv.category) = “Operations"
Investigation Context (inv.context) = “Event Analysis"
Investigation Context (inv.context) = “File Analysis"

The above rule looks for more than 4 attachments in a single session.

Situation Awareness

Comprehensive cyber situation awareness involves three key areas: computing and network
components, threat information, and mission dependencies. It has added a new dimension of
required awareness to traditional business operations. With this awareness, negative situations
can be recognized and managed as they occur. Examples of this type of content can be daily
reports and charts for visualizing certain aspects of a collection.

Event Analysis

The event analysis tag is used to classify a majority of the deep packet inspection content
available within Live. Alone, a piece of content here might not lead to an active investigation.
However, in combination with additional indicators of compromise the collections may require
immediate review. Non-standard and service-based analysis content resides in this tag.

41 NetWitness Investigation Model

Meta Guide

This tag contains the following:

 l Application Analysis: content used to identify applications.

 l Protocol Analysis: content used to identify anomalous sessions and deviations from standards

 l File Analysis: content focused on the ability of NetWitness Suite to inspect files and escalate
based on irregular behavior.

 l Flow Analysis: content classified based on directionality rules:

 l Outbound Communication with the Internet,

 l Inbound Web Application Communication,

 l Intra- and Inter-DMZ communications,

 l DMZ to Inside Communications,

 l Inside to Inside Communications,

 l B2B or Partner Communications,

 l Inbound SMTP Communications,

 l Inbound Other Applications,

 l Cleartext side of Inbound VPN Connections

 l Filters: content labeled as noise, and therefore not stored in the index of an active collection.

 l Log Analysis: content used for log analysis such RSA Log Devices and RSA Log Collectors.

NetWitness Investigation Model 42

LDAP Parser Options File

Caution: RSA strongly suggests that you do not subscribe to the options file. Subsequent
downloads of this file will overwrite all changes that you have made to the file.

Note the following:

 l If you deploy the options file, it can be found in the same directory as parsers:
/etc/netwitness/ng/parsers/.

 l The parser is not dependent upon the options file. The parser will load and run even in the
absence of the options file. The options file is only required if you need to change the default
settings.

 l If you do not have an options file (or if your options file is invalid), the parser uses the default
settings.

Note: The parser will never use both the defaults and customized options. If the options file
exists and its contents can be loaded, then the defaults will not be used at all.

By default, the LDAP parse only parses the username and password if the port is 389. The
options file allows parsing from any specified port, as well as some other configuration.

The LDAP_options file contains the following options for controlling the parser:

 l ports

 l idOnly

 l parseResponses

To change an option from false to true, edit the line inside the corresponding function, from

return false

to
return true

And similarly to go from true to false.

ports
Default value: "389, 686"

Specifies the ports on which to look for LDAP sessions. The value should be a comma or space
delineated list of port numbers. For example:
"389, 686"

LDAP sessions on ports other than those listed will not be identified, nor parsed.

43 LDAP Parser Options File

Meta Guide

idOnly
Default value: false

If enabled, LDAP sessions will be identified but no meta will be extracted. This may improve
overall system performance.

If enabled, the parseResponses option is ignored.

Note: Modifying this option requires a service restart to take effect; a simple parser reload is
insufficient.

parseResponses
Default value: false

By default, meta is not extracted from LDAP responses. If you enable this option (set its value
to true), meta will be extracted from LDAP responses. Note that this will result in a greater
amount of meta, and may decrease overall system performance.

If enabled, the meta goes to ldap.response, which is a non-standard key.

LDAP Parser Options File 44

Log Parser Customization
On occasion, you may need to modify one or more of your log parsers. For example, you may
need to fix an unknown message, or to parse certain fields differently than in the manner
provided by default.

Log Parser Customization allows you to add new parser elements or modify existing ones. All
customizations reside in a separate file that does not get removed or overwritten by Log Decoder
upgrades or the updating parsers through the RSA Live.

Note: This feature is only available in 10.6.5 and later (including NetWitness 11.x)

Loading Order
The default parser file is loaded before the custom file (if a custom file exists). This allows
users to override elements, as shown in the examples below that modify items that exist in the
default file.

File Location and Naming
Log parser files are located on the Log Decoder in the following path:
/etc/netwitness/ng/envision/etc/devices

Each log parser has its own sub-folder. For example, the ciscoasa parser files are in the
following folder:
/etc/netwitness/ng/envision/etc/devices/ciscoasa

Custom log parser files are located in the same folder as the corresponding system-provided
files. For naming, you use the name of the XML file, followed by -custom.xml

For example, the ciscoasa parser consists of two files: ciscoasa.ini and v20_ciscoasamsg.xml. If
you create a custom file, you need to name it v20_ciscoasamsg-custom.xml, and add it to the
same folder, /etc/netwitness/ng/envision/etc/devices/ciscoasa.

Header and Message Duplication
When you customize a parser, make sure to duplicate only those headers and messages that you
want to customize. That is, we recommend that you do not simply copy everything from the
default parser file and then paste it into your custom XML file. Also, note that if you duplicate
headers and messages that exist in the default parser, you will not be using the default versions,
even if RSA updates them in the future.

45 Log Parser Customization

Meta Guide

Examples
The following sections contain examples for adding or modifying portions of a log parser.

All the examples use the Oracle Access Manager (oracleam) log parser.

Example Code

Cod examples are broken down into two areas:

 l Add a New Item

 l Modify an Existing Item

Additionally, insertBefore and insertAfter describes the usage of the insertBefore and insertAfter
commands, for use when adding a new item.

Common Steps

The common steps, which are the same in all of the examples, are as follows:

 1. Use an SSH tool, such as WinSCP, to navigate to the following folder on your Log Decoder:

/etc/netwitness/ng/envision/etc/devices/oracleam

 2. Copy the oracleammsg.xml file to your local system.

 3. Note the Device Messages and Version information, which comprise the first several lines
of the oracleammsg.xml file. You need to copy these lines into your custom parser file.

<DEVICEMESSAGES

name="oracleam"
displayname="Oracle Access Manager"
group="Access Control">

<VERSION
xml="60"
checksum="110c39794680bdedfabb5a73339d38eb"
revision="104"
device="2.0"/>

 4. Using a text editor, create a file named oracleammsg-custom.xml, and add custom text,
after the introductory text specified in the previous step. The specific custom text is
supplied in each of the following examples.

 5. Save the custom file as oracleammsg-custom.xml, and using your SSH tool, upload it to
/etc/netwitness/ng/envision/etc/devices/oracleam on your Log Decoder.

Log Parser Customization 46

Meta Guide

Add a New Item
When you add an item, you use a new identifier, and optionally, an insertBefore or insertAfter
command.

You can add any of the following items:

 l Add New Header

 l Add New Message

 l Add New Valuemap

 l Add New Tagval

Add New Header

Using a text editor, create a file named oracleammsg-custom.xml, and add the following text:
<DEVICEMESSAGES

name="oracleam"
displayname="Oracle Access Manager"
group="Access Control">

<VERSION
xml="60"
checksum="110c39794680bdedfabb5a73339d38eb"
revision="104"
device="2.0"/>
<!-- VERSION info copied from oracleammsg.xml -->

<HEADER

id1="0044"
id2="0044"
insertBefore="0005"
content="%ORACLEAM-<hfld1>: <hdate> <htime>
*<htimezone> - <messageid> <!payload:messageid>" />

</DEVICEMESSAGES>

Note the insertBefore="0005" line. This instructs the system to insert the new header before
existing header number 0005.

Add New Message

Using a text editor, create a file named oracleammsg-custom.xml, and add the following text:
<DEVICEMESSAGES

name="oracleam"
displayname="Oracle Access Manager"
group="Access Control">

47 Log Parser Customization

Meta Guide

<VERSION
xml="60"
checksum="110c39794680bdedfabb5a73339d38eb"
revision="104"
device="2.0"/>
<!-- VERSION info copied from oracleammsg.xml -->

<MESSAGE

id1="AUTHZ_SUCCESS:03"
id2="AUTHZ_SUCCESS"
eventcategory="1302000000"
insertAfter="AUTHZ_SUCCESS:01"
functions="<@ec_theme:Authentication><@ec_
outcome:Success><@event_time:*EVNTTIME($HDR,'%G/%F/%W
%N:%U:%O',hdate,htime)><@msg:*PARMVAL($MSG)><@:*SYSVAL
($MSGID,$ID1)>"
content="<event_type> - <web_method> -
<hostname><fld1>- <saddr> - {<web_
domain>%<fld27><fld2>|<url><fld2>} -
cn=<username>,<fld3> - <fld4> - <protocol> -
<obj_type><fld6> - <context> - <id> -
cn=<fld7>,cn1=<fld23>, uid=<uid>" />

</DEVICEMESSAGES>

Note the insertAfter="AUTHZ_SUCCESS:01" line. This instructs the system to insert the
new message after existing message with ID AUTHZ_SUCCESS:01.

Add New Valuemap

For the remaining examples, the introductory lines are not included. Add the following code after
the introductory VERSION information.
<VALUEMAP

name="getDisposition"
default="$NONE"
keyvaluepairs="0='Failure'|1='Success'" />

<MESSAGE

id1="AUTHZ_SUCCESS:03"
id2="AUTHZ_SUCCESS"
eventcategory="1302000000"
insertBefore="AUTHZ_SUCCESS:01"
functions="<@ec_theme:Authentication><@ec_outcome:Success><@event_
time:*EVNTTIME($HDR,'%G/%F/%W %N:%U:%O',hdate,htime)><@msg:*PARMVAL
($MSG)><@:*SYSVAL($MSGID,$ID1)>"
content="<event_type> - <web_method> - <hostname><fld1>-
<saddr> - {<web_
domain>%<fld27><fld2>|<url><fld2>} -
cn=<username>,<fld3> - <fld4> - <protocol> - <obj_
type><fld6> - <context> - <id> -
cn=<fld7>,cn1=<fld23>, uid=<uid>" />

Log Parser Customization 48

Meta Guide

</DEVICEMESSAGES>

Add New Tagval

Add the following code after the introductory VERSION information.
<TAGVALMAP

pairdelimiter="^^" encapsulator=""" />

<VALUEMAP

name="getDisposition"
default="$NONE"
keyvaluepairs="0='Failure'|1='Success'" />

<MESSAGE

id1="ORACLEAM_TVM"
id2="ORACLEAM_TVM"
eventcategory="1901000000"
tagval="true"
missField="true"
functions="<@msg:*PARMVAL($MSG)><@event_time:*EVNTTIME
($MSG,'%W-%G-%F %H:%T:%S',fld3)><@disposition:*getDisposition
(fld12)><@msg_id:*PARMVAL(event_type)><@vid:*PARMVAL
(event_type)><@event_id:*STRCAT(event_
type,_,disposition)><@event_cat:*getEventLegacyCategory(event_
id)><@event_cat_name:*getEventLegacyCategoryName(event_cat)>"
content="IAU_EVENTTYPE=<event_type>^^IAU_
EVENTCATEGORY=<category>^^IAU_COMPONENTTYPE=<event_
source>^^IAU_HOSTID=<dhost>^^IAU_
HOSTNWADDR=<daddr>^^IAU_AGENTID=<fld1>^^IAU_
PROCESSID=<process_id>^^IAU_SESSIONID=<sessionid>^^IAU_
SSOSESSIONID=<sessionid1>^^IAU_
APPLICATIONNAME=<application>^^IAU_
APPLICATIONDOMAINNAME=<fld2>^^IAU_
EVENTSTATUS=<fld12>^^IAU_TSTZORIGINATING=<fld3>^^IAU_
THREADID=<fld4>^^IAU_INITIATOR=<username>^^IAU_
USERID=<uid>^^IAU_MESSAGETEXT=<event_description>^^IAU_
REMOTEIP=<saddr>^^IAU_RESOURCE=<fld5>^^IAU_
DOMAINNAME=<domain>^^IAU_SERVERNAME=<hostname>^^IAU_
INSTANCENAME=<instance>^^IAU_AUTHORIZATIONPOLICYID=<policy_
id>^^IAU_AUTHENTICATIONPOLICYID=<policy_id>^^IAU_
RESOURCEHOST=<shost>^^IAU_RESOURCEURI=<url>^^IAU_
ADDITIONALINFO=<fld7>" />

</DEVICEMESSAGES>

Note the tagval="true" code in the message. We are adding this message that uses the new
Tagval map.

49 Log Parser Customization

Meta Guide

insertBefore and insertAfter
As shown in some of the previous examples, the insertBefore and insertAfter commands
instruct the system about where to place the new items when combining the standard and custom
XML definition files, as it creates a unified parser during processing.

Note: If both insertBefore and insertAfter are defined, insertBefore will be used, and a
warning will be logged. If neither is specified, the header or message is added at the end of
the combined parser definition.

Modify an Existing Item
To modify an existing element, you use the same identifiers as an existing item, and change the
contents. See the examples to modify any of the following items:

 l Modify Header

 l Modify Message

 l Modify Valuemap

 l Modify Tagval

Modify Header

This example replaces the Header that has an ID of 0004. Add the following code after the
introductory VERSION information.
<HEADER

id1="0004"
id2="0004"
content="%ORACLEAM-<hfld1>: <hdate> <htime>
*<htimezone> - <messageid> <!payload:messageid>" />

</DEVICEMESSAGES>

Modify Message

This example replaces the Message that has an ID of AUTHZ_SUCCESS:01. Add the
following code after the introductory VERSION information.
<MESSAGE

id1="AUTHZ_SUCCESS:01"
id2="AUTHZ_SUCCESS"
eventcategory="1302000000"
functions="<@ec_theme:Authentication><@ec_
outcome:Success><@event_time:*EVNTTIME($HDR,'%G/%F/%W

Log Parser Customization 50

Meta Guide

%N:%U:%O',hdate,htime)><@msg:*PARMVAL($MSG)><@:*SYSVAL
($MSGID,$ID1)>"
content="<event_type> - <web_method> -
<hostname><fld1>- <saddr> - {<web_
domain>%<fld27><fld2>|<url><fld2>} -
cn=<username>,<fld3> - <fld4> - <protocol> -
<obj_type><fld6> - <context> - <id> -
cn=<fld7>,cn1=<fld23>, uid=<uid>" />

</DEVICEMESSAGES>

Modify Valuemap

This example replaces the getDisposition Valuemap. Add the following code after the
introductory VERSION information.
<VALUEMAP

name="getDisposition"
default="$NONE"
keyvaluepairs="0='Failure'|1='Success'|3='Tes
t'" />

</DEVICEMESSAGES>

In this example, we are assuming the device XML, oracleammsg.xml, includes a Valuemap
named getDisposition, and that we are changing the existing information, for example we might
be adding a new key value pair, 3='Test&apos.

Modify Tagval

This example replaces the existing Tagval. Add the following code after the introductory
VERSION information.
<TAGVALMAP

pairdelimiter="^^^" encapsulator=""" />

<MESSAGE

id1="ORACLEAM_TVM"
id2="ORACLEAM_TVM"
eventcategory="1901000000"
tagval="true"
missField="true"
functions="<@msg:*PARMVAL($MSG)><@event_time:*EVNTTIME
($MSG,'%W-%G-%F %H:%T:%S',fld3)><@disposition:*getDisposition
(fld12)><@msg_id:*PARMVAL(event_type)><@vid:*PARMVAL
(event_type)><@event_id:*STRCAT(event_
type,_,disposition)><@event_cat:*getEventLegacyCategory(event_
id)><@event_cat_name:*getEventLegacyCategoryName(event_cat)>"
content="IAU_EVENTTYPE=<event_type>^^^IAU_
EVENTCATEGORY=<category>^^^IAU_COMPONENTTYPE=<event_
source>^^^IAU_HOSTID=<dhost>^^^IAU_

51 Log Parser Customization

Meta Guide

HOSTNWADDR=<daddr>^^^IAU_AGENTID=<fld1>^^^IAU_
PROCESSID=<process_id>^^^IAU_SESSIONID=<sessionid>^^^IAU_
SSOSESSIONID=<sessionid1>^^^IAU_
APPLICATIONNAME=<application>^^^IAU_
APPLICATIONDOMAINNAME=<fld2>^^^IAU_
EVENTSTATUS=<fld12>^^^IAU_TSTZORIGINATING=<fld3>^^^IAU_
THREADID=<fld4>^^^IAU_INITIATOR=<username>^^^IAU_
USERID=<uid>^^^IAU_MESSAGETEXT=<event_description>^^^IAU_
REMOTEIP=<saddr>^^^IAU_RESOURCE=<fld5>^^^IAU_
DOMAINNAME=<domain>^^^IAU_SERVERNAME=<hostname>^^^IAU_
INSTANCENAME=<instance>^^^IAU_AUTHORIZATIONPOLICYID=<policy_
id>^^^IAU_AUTHENTICATIONPOLICYID=<policy_id>^^^IAU_
RESOURCEHOST=<shost>^^^IAU_RESOURCEURI=<url>^^^IAU_
ADDITIONALINFO=<fld7>" />

</DEVICEMESSAGES>

Log Parser Customization 52

Lua Debugging Tool
Because I could not get this topic to publish correctly (images did not publish, plus title
mishigas), I have moved it to the 11.4 Project, under 2 Config > ATD. I will publish the topic
there, move it to Staging, and then move it to Content after 11.4 GA. Going forward, if we need
to update the topic, we should do that in reverse: move the topic to 11.x online space, then
republish from ATD target, and then move it back to Content. Hopefully, that will allow us to
keep the same URL for the topic.

53 Lua Debugging Tool

Mail Lua Parser Options File

Caution: RSA strongly suggests that you do not subscribe to the options file. Subsequent
downloads of this file will overwrite all changes that you have made to the file.

Note the following:

 l If you deploy the options file, it can be found in the same directory as parsers:
/etc/netwitness/ng/parsers/.

 l The parser is not dependent upon the options file. The parser will load and run even in the
absence of the options file. The options file is only required if you need to change the default
settings.

 l If you do not have an options file (or if your options file is invalid), the parser uses the default
settings.

Note: The parser will never use both the defaults and customized options. If the options file
exists and its contents can be loaded, then the defaults will not be used at all.

The Mail_lua_options file contains the following options for controlling the parser:

 l registerEmailSrcDst

 l parseQuoted

 l registerAddressHosts

 l parseReceived

To change an option from false to true, edit the line inside the corresponding function, from

return false

to
return true

And similarly to go from true to false.

Note the following:

 l Modifying any of these options requires a service restart to take effect; a simple parser reload
is insufficient.

 l (missing or bad snippet)

registerEmailSrcDst
Default value: false

Mail Lua Parser Options File 54

Meta Guide

This option determines whether to register email address meta using the index keys email.src
and email.dst.

If set to false, all email address meta is registered with the index key email.

If set to true:

 l Originating email addresses will be registered with the index key email.src

 l Recipient email addresses will be registered with the index key email.dst

parseQuoted
Default value: false

If set to false (default) then meta will not be extracted from headers which are contained within
an email message (i.e., from a quoted message).

If set to true, then headers from quoted messages will be parsed.

registerAddressHosts
Default value: false

This option determines whether to register the host portion of email addresses as meta. The key
used to register is alias.host, alias.ip, or alias.ipv6, as appropriate.

parseReceived
Default value: true

This option determines whether to register meta from Received: headers.

Many mail transfer agents (MTAs) add badly formatted information into Received: headers.
This often manifests as as alias.host meta that is not a hostname. If this is problematic in your
environment, disable parsing of Received: headers by setting the value to false.

55 Mail Lua Parser Options File

Packet Parsers
This topic discusses and describes the packet (Lua) parsers available in RSA NetWitness
Platform. If you need a parser that does not already exist, you can Request a Parser.

Note: More information on each of these parsers is available in Live. Navigate to Live search,
and select RSA Lua Parser in the Resource Types field. From the results, select any parser
and click to display all the information for the parser.

Context
Packet parsers identify the application layer protocol of sessions seen by the Decoder, and
extract meta data from the packet payloads of the session.

Every packet parser is able to extract meta from every session. For example, a webmail session
will be parsed by both an HTTP parser which identifies the session as HTTP and extracts meta
from HTTP headers, and by a MAIL parser which extracts email-related meta from message
headers. Further, if the session were to contain an executable file, its presence would be
detected by a windows executable parser.

Packet parsers in RSA NetWitness Suite may be broadly classified as:

 l System or Native parsers: These are compiled into the Decoder base code. Updates are
delivered along with updates to RSA NetWitness Suite. Many system parsers have Lua
equivalents. In these cases, generally, the native parser may perform faster, while the Lua
parser may extract more meta.

 l Lua parsers: these are written in the Lua programming language, and delivered via Live.
Customers can write their own custom Lua parsers.

 l Flex parsers: these were written in a proprietary scripting language, Flex, and delivered via
Live. These are now discontinued, and no longer delivered in Live. Every existing Flex parser
has a better Lua equivalent, and all customers using NetWitness Suite should not be using
Flex parsers.

Packet Parsers in NetWitness Suite
The following table describes the Lua parsers delivered with RSA NetWitness Platform.

Parser
Name Description

apt_
artifacts

Detects possible apt WMI and windows registry manipulation.

Avamar Identifies Avamar Backup and Recovery, TCP port 28001.

Packet Parsers 56

https://emcinformation.com/139605/SI/.ashx

Meta Guide

Parser
Name Description

BGP_lua Identifies BGP Routing Protocol.

bittorrent_
lua

Identifies the bittorrent protocol and registers the name of the file being
downloaded.

Canon_
BJNP

Identifies Canon printer discover protocol BJNP.

cerber Detects potential Cerber ransomware beaconing.

china_
chopper

Detects cleartext China Chopper sessions.

creditcard_
detection_
lua

Attempts to detect possible credit card numbers and validate with Luhn's
Algorithm.

CustomTCP Detects CustomTCP beaconing activity. Registers C2 domain and victim
hostname as alias.host meta.

db2_lua Extracts queries from DB2 database protocol sessions.

DCERPC Extracts action and Kerberos authentication from Microsoft's DCERPC
protocol.

Derusbi_
Server_
Handshake

Detects Derusbi server handshake.

DHCP_lua Identifies DHCP (BOOTP) and DHCPv6, extracts hosts and addresses.

DNP3_lua DNP3 Distributed Network Protocol (SCADA).

DNS_
verbose_lua

Identifies DNS sessions. Registers query and response records including record
type. Registers protocol error messages.

dr_watson_
lua

Detects Dr Watson crash report and registers name of crashed process.

duqu_lua Detects binaries that may be related to the duqu threat.

DynDNS Detects dynamic DNS hosts and servers.

ein_
detection_
lua

Attempts to detect Employer Identification Numbers.

57 Packet Parsers

Meta Guide

Parser
Name Description

ethernet_oui Determines the manufacturer of eth.

Evilgrab Detects possible Evilgrab APT malware activity.

exif Extract longitude and latitude coordinates from exif data embedded in JPEG
files.

fingerprint_
7zip

Detects 7zip archive files.

fingerprint_
access_db_
lua

Identifies Microsoft Access database files.

fingerprint_
apple_dmg_
lua

Detects Mac OS X Disk Copy Disk Image files.

fingerprint_
apple_ios_
lua

Detects Apple IOS App files.

fingerprint_
apple_
iwork_lua

Detects Apple iWork files (Pages, Numbers and Keynote).

fingerprint_
appleExec_
lua

Detects MAC OSX executable binary files.

fingerprint_
bmp

Detects BMP format image files.

fingerprint_
cab

Identifies cabinet files (cab).

fingerprint_
cad_lua

Detects Autodesk Autocad DWG, DXF, and DWF files.

fingerprint_
chm_lua

Identifies Microsoft Compiled Help files, and detects potentially suspicious
elements within.

fingerprint_
flash

Detects Adobe Flash (swf) files.

Packet Parsers 58

Meta Guide

Parser
Name Description

fingerprint_
font

Identifies font files: embedded opentype (eot), web open format (woff),
opentype (otf), and truetype (ttf).

fingerprint_
gif_lua

Identifies GIF files.

fingerprint_
gzip

Detects files which have been compressed using the gzip family of compression
programs (gzip, bzip, etc).

fingerprint_
java

Detects Java JAR and CLASS files.

fingerprint_
javascript_
lua

Detect javascript, and suspicious javascript actions and anomalies.

fingerprint_
job

Identifies windows job task scheduling files.

fingerprint_
jpg_lua

Detects JPEG image files.

fingerprint_
lnk_lua

Identifies lnk files and detects possible exploit characteristics.

fingerprint_
msi_lua

Identifies Microsoft OLE / Compound Document Format Windows Installer
files.

fingerprint_
mssql_lua

Detects Microsoft SQL Server database files.

fingerprint_
office_lua

Identifies Microsoft Office 95-2007 Word, Excel, and Powerpoint documents.

fingerprint_
pdf_lua

Identifies PDF files and detects risky characteristics.

fingerprint_
pff

Detects Microsoft Outlook Personal File Folder objects such as pab, pst, and
ost.

fingerprint_
pkcs12_lua

Detects PKCS #12 format private key files.

fingerprint_
png_lua

Detects PNG image files.

59 Packet Parsers

Meta Guide

Parser
Name Description

Fingerprint_
Private_
Key

Detects SSH and PGP private key files.

fingerprint_
rar_lua

Detects RAR archive files.

fingerprint_
rtf_lua

Detects RTF files.

fingerprint_
unix_script_
lua

Identifies shell, perl, ruby, and python scripts.

fingerprint_
webm

Detects webm and matroska video files.

fingerprint_
zip

Detects PK format zip files, and extracts the names of files contained in the
archive.

FIX_lua Identifies the Financial Information Exchange Protocol. Form_Data_lua Extracts
submitted values from HTTP POST actions.

Form_
Data_lua

Extracts submitted values from HTTP POST actions.

FTP_lua File Transfer Protocol (FTP) RFC 959.

ghost Detects likely Ghost Rat beacon sessions.

glass_rat Detects the network communication used by the GlassRAT Trojan identified by
RSA Research.

gnutella_lua Identifies the Gnutella file sharing protocol.

HTML_
threat

Detects common HTML threat techniques such as hidden frames and embedded
objects.

htran_lua Identifies the error message generated by the htran redirection tool.

HTTP_lua Extracts values from HTTP protocol request and response headers.

HTTP_lua_
options

Use this file to influence the behavior of the HTTP_lua parser. For details, see
HTTP Lua Parser Options File.

Packet Parsers 60

https://community.rsa.com/docs/DOC-73318

Meta Guide

Parser
Name Description

HTTP_
SQL_
Injection

Detect possible injection of SQL commands in HTTP requests.

ICMP Provides types and codes from ICMP packets.

IDN_
homograph

Detects punycode-encoded internationalized domain names which use non-Latin
Unicode code points whose glyphs resemble those of Latin Unicode code points.
 Registers the decoded homograph as analysis.service meta.

Reference the RSA Link blog post from RSA Research for more details about
this threat: Dissecting PunyCode - Not All Characters are Created Equal.

IMAP_lua Identifies IMAP, registers commands, errors, usernames, and passwords.

IRC_
verbose_lua

Expanded IRC parsing.

ISAKMP Identifies ISAKMP Internet Security Association and Key Management
Protocol).

iSCSI Identifies SCSI-over-IP.

JSON-RPC Identifies JSON-RPC 2.0 streams. Will not identify JSON-RPC 1.0 streams,
and may not identify JSON-RPC over transports such as HTTP.

Kerberos Extracts meta from the Kerberos network protocol.

LDAP Lightweight Directory Access Protocol, and extensions.

LDAP_
options

Lightweight Directory Access Protocol, and extensions. Use this file to
influence the behavior of the LDAP parser. For details, see LDAP Parser Options
File.

Lync Identifies Microsoft Lync (formerly Microsoft Office Communicator, Windows
Messenger).

MAIL_lua Extracts values from email messages, such as email addresses, subject, and
client.

Mail_lua_
options

Use this file to influence the behavior of the Mail_lua parser. For details, see
Mail Lua Parser Options File.

Mitozhan Detects Mitozhan malware command and control.

modbus Identifies MODBUS TCP/IP, extracts commands, errors, and device
identifications.

61 Packet Parsers

https://community.rsa.com/community/products/netwitness/blog/2017/05/03/punycode-not-all-characters-are-created-equal

Meta Guide

Parser
Name Description

MSU_rat Detects MSU RAT activity.

NetBIOS_
lua

NetBIOS over TCP/IP: NBNS, NBDS, NBSS.

NFS_lua Identifies and parses RPC-related protocols NFS, MOUNT, and PORTMAP.

NTLMSSP_
lua

Extracts Active Directory user information from NTLM HTTP headers from
proxy authorization.

ntp_lua Identifies Network Time Protocol.

OCSP_lua Extracts certificate information and status from OCSP messages.

Packers Detects specific packer used to pack executables.

phishing_
lua

Registers the host portion from each URL found within an email.

plugx Detect PlugX malware.

Poison_Ivy Detects Poison Ivy RAT activity.

POP3_lua Post Office Protocol version 3.

Proxy_
Block_Page

Parses proxy denied exception pages.

pvid Detects PGV_PVID malware activity. PGV_PVID is a cookie string the actor
put into the malware's POST routine.

pwdump Detects output from Windows password dumping tools such as pwdump.

QQ_lua Identifies QQ (OICQ protocol) sessions.

radius Remote Authentication Dial In User Service.

RDP_lua Identifies the Microsoft Remote Desktop Protocol.

rekaf Detects a variant of rekaf and derives the xor key (crypto) and name of the
infected host.

ripng_lua Identifies the RIP routing protocol.

rlogin Identifies Remote Login protocol.

rsync Identifies the RSYNC ;Network Protocol.

rtmp_lua Real Time Messaging Protocol.

Packet Parsers 62

Meta Guide

Parser
Name Description

RTSP Identifies the Real Time Streaming Protocol.

SCCP_lua Cisco Skinny Client Control Protocol.

Search_
Engines

Extracts search terms from search engine queries.

sekur Detects the initial handshake of the Sekur/Anunak Trojan.

session_
analysis

Analyzes session characteristics such as bytes transmitted vs bytes received,
TCP flags seen, etc.

shadyrat_
lua

Identifies potential artifacts related to shadyrat command and control traffic.

Signed_
Executable

Extracts the Certificate Authority, Subject, and Serial Number from the first
x509v3 certificate in the certificate chain of a signed executable.

SIP_lua Session Initiation Protocol (SIP).

SMB_lua Parses the Microsoft SMB/CIFS protocol, versions 1 and 2.

SMTP_lua Parses the SMTP protocol (RFC 5321).

SNMP_lua Parses SNMP versions 1, 2c, 2p, 2u, and 3.

socks_lua Identifies Socks protocol version 4 and 5.

SoulSeek_
lua

Identifies the SoulSeek file sharing protocol.

spectrum_
lua

Determines which sessions are sent to Malware Analysis, based upon file types
seen in the session, and total session size.

SSH_lua Identifies SSH protocol.

struts_
exploit

Detects a possible Remote Code Execution attack when using the Struts REST
plugin with XStream handler to handle XML payloads.

supercmd Detects SuperCMD Trojan beaconing. For details on the SuperCMD Rat, see
the SUPERCMD RAT RSA blog post.

teredo Identifies teredo tunneled sessions. Performs identification only. No meta is
extracted.

TDS_lua Identifies Microsoft SQL Server 'Tabular Data Stream' protocol.

TFTP_lua Identifies Trivial File Transfer Protocol, extracts names of files transferred.

63 Packet Parsers

https://blogs.rsa.com/supercmd-rat/

Meta Guide

Parser
Name Description

TLD_lua Extracts the top-level domain and second-level domain portions from hostnames.

TLD_lua_
options

Use this file to influence the behavior of the TLD_lua parser. For details, see
TLD Lua Parser Options File.

TLS_lua Identifies SSL 2.0, SSL 3.0, TLS 1.0, TLS 1.1, and TLS 1.2.

TN3270E_
lua

Identifies IBM TN3270E sessions.

traffic_flow Provides subnet names for internal networks, and directionality of the session
(inbound, outbound, lateral).

traffic_
flow_
options

This is an optional file for use with the traffic_flow Lua parser. If used, this
file provides a way for customers to configure internal subnets as described
within the full product documentation for this parser. For details, see Editing the
Options File in the Traffic Flow Lua topic.

vCard_lua Extracts fullname and email values from vCard, xCard, jCard, and hCard
formats.

VNC Identifies the Remote Framebuffer protocol used by VNC and its derivatives.

windows_
command_
shell_lua

Identifies Microsoft Windows command shell sessions.

windows_
executable

Identifies windows executables, and analyzes them for anomalies and other
suspicious characteristics.

X11_lua Identifies the X11 protocol (RFC 1013).

xor_
executable_
lua

Detects executables that have been xor or hex encoded.

Discontinued Packet Parsers
The following table lists the Lua parsers that have been removed from the system.

Packet Parsers 64

Meta Guide

Name Description Notes

AIM_
lua

OSCAR protocol used by
AIM (AOL Instant
Messenger) and ICQ, and
AIM-express web client.

As of December 15, 2017, AOL Instant Messenger
products and services have been shut down and no
longer work.

BITS Identifies Microsoft BITS
Protocol.

BITS was added to HTTP_lua, making the
standalone BITS parser redundant. BITS parsing in
HTTP_lua is also much more complete than it was in
the standalone parser.

65 Packet Parsers

Meta Guide

Phishing Lua Parser Options File

Caution: RSA strongly suggests that you do not subscribe to the options file. Subsequent
downloads of this file will overwrite all changes that you have made to the file.

Note the following:

 l If you deploy the options file, it can be found in the same directory as parsers:
/etc/netwitness/ng/parsers/.

 l The parser is not dependent upon the options file. The parser will load and run even in the
absence of the options file. The options file is only required if you need to change the default
settings.

 l If you do not have an options file (or if your options file is invalid), the parser uses the default
settings.

Note: The parser will never use both the defaults and customized options. If the options file
exists and its contents can be loaded, then the defaults will not be used at all.

The phishing_lua_options file contains the following options for controlling the parser:

 l Deduplicate Host Registration

 l Check Host Consistency

 l Whitelist Domain

 l Register URL Components

 l Register Entire URL

 l Host Key

To change an option from false to true, edit the line inside the corresponding function, from

return false

to
return true

And similarly to go from true to false.

Note: Modifying any of these options requires a service restart to take effect; a simple parser
reload is insufficient.

Phishing Lua Parser Options File 66

Meta Guide

Deduplicate Host Registration
Name: deduplicate. Default value: true

By default, if the same host portion appears in multiple HREFs within a session, it will only be
registered once for that session.

If this option is disabled, then the host portion of an HREF will be registered each time it is
seen, regardless of whether it has already been registered previously for that session.

Note that this option only affects the behavior of this parser. A host may still be registered by
another parser. This option has no effect on the Check Host Consistency option.

Check Host Consistency
Name: hostCheck. Default value: true

Compares the host portions of all URLs found within an HREF. If the host portion is a hostname,
then only the domain portion is compared. If the host portion is an IP address, the entire IP is
compared.

Whitelist Domain
Name: whitelistDomain. Has no default value.

Intended for sites that rewrite HREFs in email messages. For example:
http://www.foo.com

becomes:
http://www.foo.com

This option accepts a domain to exclude from consistency checking. The domain must be
enclosed in quotes, such as "example.com".

Note that in the following example, an alert will still be registered even if "example.com" is
whitelisted:
http://www.bar.com

Register URL Components
Name: urlComponents. Default value: false.

Warning: Do not enable this option if you are enabling the Register Entire URL
(registerURL) option.

67 Phishing Lua Parser Options File

Meta Guide

In addition to host meta, this option registers the components of each URL found. For example,
assume the following URL:
http://www.example.com/directory/filename.ext?p=foo%3Dbar.

This registers the following meta:

 l directory: directory

 l filename: filename.ext

 l extension: ext

 l query: p=foo%3Dbar

No deduplication of components (other than host) is performed, even if the option Deduplicate
Host Registration is enabled.

Register Entire URL
Name: registerUrl. Default value: false.

Warning: URLs are highly unique. Therefore, enabling this option will bloat the metadb,
decreasing performance and retention, and is NOT ADVISED.

Do not enable this option if also enabling Register URL Components.

Registers the entirety of each URL found. The URL will be registered with the meta key url.
Registered URLs will be a maximum of 256 characters (this is a standard meta length
limitation).

No deduplication of URLs performed, even if the Deduplicate Host Registration option is
enabled.

Host Key
Name: hostKey. Default is alias.host.

Default behavior is to register extracted hosts as alias.host, alias.ip, or alias.ipv6 as appropriate.

Modifying this value will cause extracted hosts to instead be registered with the specified key. If
the key does not already exist, it will be created. Normal key name restrictions apply.

Phishing Lua Parser Options File 68

Meta Guide

SMTP Lua Parser Options File

Caution: RSA strongly suggests that you do not subscribe to the options file. Subsequent
downloads of this file will overwrite all changes that you have made to the file.

Note the following:

 l If you deploy the options file, it can be found in the same directory as parsers:
/etc/netwitness/ng/parsers/.

 l The parser is not dependent upon the options file. The parser will load and run even in the
absence of the options file. The options file is only required if you need to change the default
settings.

 l If you do not have an options file (or if your options file is invalid), the parser uses the default
settings.

Note: The parser will never use both the defaults and customized options. If the options file
exists and its contents can be loaded, then the defaults will not be used at all.

The SMTP_lua_options file contains the following options for controlling the parser:

 l registerEmailSrcDst

 l registerAddressHosts

 l errorCodeOnly

To change an option from false to true, edit the line inside the corresponding function, from

return false

to
return true

And similarly to go from true to false.

registerEmailSrcDst
Default value: false

Determines whether or not to register email address meta using the index keys email.src and
email.dst.

 l If set to false, all email address meta is registered with the index key email.

 l If set to true:

69 SMTP Lua Parser Options File

Meta Guide

 l Originating email addresses are registered with the index key email.src

 l Recipient email addresses are registered with the index key email.dst

 l Targets of EXPN and VRFY are registered with the index key email.dst

Note: Modifying this option requires a service restart to take effect; a simple parser reload is
insufficient.

registerAddressHosts
Default value: false

Determines whether or not to register the host portion of email addresses as meta. The key used
to register is alias.host, alias.ip, or alias.ipv6 as appropriate.

errorCodeOnly
Default value: true

Determines whether or not to register error codes only, or the entire error messages.

 l If set to true, only the error code (such as "450", "550", and so on) is registered.

 l If set to false, the entire error message is registered (e.g., "550 unknown user"). In the case
of a 421 server greeting, the server name is removed from the error text and be registered as
alias.[host|ip|ipv6] instead.

SMTP Lua Parser Options File 70

Meta Guide

System Parsers
This topic lists the native parsers available in RSA Security Analytics.

Context
Packet parsers identify the application layer protocol of sessions seen by the Decoder, and
extract meta data from the packet payloads of the session.

Every packet parser is able to extract meta from every session. For example, a webmail session
will be parsed by both an HTTP parser which identifies the session as HTTP and extracts meta
from HTTP headers, and by a MAIL parser which extracts email-related meta from message
headers. Further, if the session were to contain an executable file, its presence would be
detected by a windows executable parser.

Packet parsers in RSA NetWitness Suite may be broadly classified as:

 l System or Native parsers: These are compiled into the Decoder base code. Updates are
delivered along with updates to RSA NetWitness Suite. Many system parsers have Lua
equivalents. In these cases, generally, the native parser may perform faster, while the Lua
parser may extract more meta.

 l Lua parsers: these are written in the Lua programming language, and delivered via Live.
Customers can write their own custom Lua parsers.

 l Flex parsers: these were written in a proprietary scripting language, Flex, and delivered via
Live. These are now discontinued, and no longer delivered in Live. Every existing Flex parser
has a better Lua equivalent, and all customers using NetWitness Suite should not be using
Flex parsers.

System Parsers in RSA NetWitness Platform
The following table describes the system parsers delivered with RSA NetWitness Platform.

Note For content that has been discontinued, see Discontinued Content.

Name Description

ALERTS Alerts

DHCP Dynamic Host Configuration Protocol

71 System Parsers

Meta Guide

Name Description

DNS Domain Name Service

enVision Log Decoder Service

FTP File Transfer Protocol

GeoIP Geographic data based on ip.src

GTalk Google Talk

H323 H.323 Teleconferencing Protocol

HTTP Hyper Text Transport Protocol

HTTPS Secure Socket Layer Protocol

IRC Internet Relay Chat Protocol

MAIL Standard E-Mail Format (RFC822)

NETBIOS NETBIOS computer name and parser

NETWORK Network Layer parser

NFS Network File System

NNTP Network News Transport Protocol

PGP PGP blocks within network traffic parser

POP3 Post Office Protocol

RIP Routing Information Protocol

RTP Real Time Protocol for audio/video

SCCP Cisco Skinny Client Control Protocol

SEARCH Searches content for keywords and/or regular expressions

SIP Session Initiation Protocol

System Parsers 72

Meta Guide

Name Description

SMB Server Message Block

SMIME SMIME blocks within network traffic

SMTP Simple Mail Transport Protocol

SNMP Simple Network Management Protocol

SSH Secure Shell

TDS MSSQL and Sybase Database Protocol

TELNET TELNET Protocol

TFTP Trivial File Transfer Protocol

TNS Oracle Database Protocol

VCARD Extracts Full Name and E-mail information

73 System Parsers

Meta Guide

RSA Threat Content mapping with MITRE
ATT&CK™

Introduction to MITRE ATT&CK™ Navigator
Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK™) for enterprise is a
framework which describes the adversarial actions or tactics from Initial Access (Exploit) to
Command & Control (Maintain). ATT&CK Enterprise deals with the classification of post-
compromise adversarial tactics and techniques against Windows, Linux and MacOS. This
community-enriched model adds techniques used to realize each tactic. These techniques are not
exhaustive, and the community adds them as they are observed and verified.

All RSA Application Rules, ESA Rules and Lua Parsers have been mapped to one or more
ATT&CK™ techniques. This mapped content can be viewed in JSON format and can be
graphically represented to measure ATT&CK™ matrix coverage by RSA Threat Content.

See the following blog posts on RSA Link for more information:

 l For details on Threat Mapping and how to view a JSON in ATT&CK Navigator, see
Introduction to MITRE’s ATT&CK™ and Mapping to ESA Rules.

 l To learn more about content mapping, graphical representation and to access JSON files with
mapped content, see RSA Threat Content mapping with MITRE ATT&CK™.

Note: Multiple blog posts on RSA Link contain samples of JSON.

Generate of MITRE ATT&CK™ Metadata for RSA NetWitness Con-
tent
The Investigation Feed generates the metadata for the MITRE ATT&CK™ framework for RSA
Application Rules and RSA Lua Parser logic. The keys ATT&CK Tactic and ATT&CK
Technique are populated on a match to an out-of-the-box rule.

You can view populated meta in the Investigate > Navigate view.

RSA Threat Content mapping with MITRE ATT&CK™ 74

https://community.rsa.com/community/products/netwitness/blog/2018/08/31/introduction-to-mitre-s-attck
https://community.rsa.com/community/products/netwitness/blog/2019/09/19/rsa-threat-content-mapping-with-mitre-attck

Meta Guide

Analysts can query on a specific MITRE ATT&CK technique to investigate further.

You can also view an query on MITRE ATT&CK keys in Investigation.

75 RSA Threat Content mapping with MITRE ATT&CK™

Meta Guide

Configure RSA NetWitness for Mitre ATT&CK™ Metadata
In RSA NetWitness 11.4 and above, all MITRE ATT&CK™ metadata is generated out-of-the-
box and does not require any customization.

For RSA NetWitness Platform 11.3 and lower, follow these steps to generate the metadata:

 1. Add the custom keys, ATT&CK Tactic and ATT&CK Technique, to the table-map-
custom.xml file on the Decoder.

 a. In the NetWitness menu, select ADMIN > Services.

 b. In the Services grid, select a Log Decoder.

 c. From the Actions menu, select View > Config, then select the Files tab in the Services
Config view.

 d. Select table-map-custom.xml from the drop-down list, and in the <mappings> section
of the file, add the following new mappings:

<mapping envisionName="attack.tactic" nwName="attack.tactic" flags="None"
format="Text"/>
<mapping envisionName="attack.technique" nwName="attack.technique"
flags="None" format="Text"/>

RSA Threat Content mapping with MITRE ATT&CK™ 76

Meta Guide

 e. Click Apply and push changes to other Log Decoders as desired.

 2. Add the custom keys, ATT&CK Tactic and ATT&CK Technique, to the Concentrator
custom index file.

 a. In the NetWitness menu, select ADMIN > Services.

 b. In the Services grid, select the Concentrator and in the toolbar, select View > Config,
then select the Files tab.

The Device Config view is displayed with the Concentrator Files tab open.

 c. Select index-concentrator-custom.xml from the drop-down list, and add the new keys
as shown below and then click Apply.

<key description="ATT&CK Tactic" name="attack.tactic" format="Text"
level="IndexValues" valueMax="10000"/>

<key description="ATT&CK Technique" name="attack.technique"
format="Text" level="IndexValues" valueMax="10000"/>

77 RSA Threat Content mapping with MITRE ATT&CK™

Meta Guide

 d. Push changes to other Concentrators as desired.

 e. For changes to take effect immediately, restart all concentrators onto which changes
were pushed.

 3. Get the latest Investigation Feed from Live and deploy to the desired log decoders or
decoders.

RSA Threat Content mapping with MITRE ATT&CK™ 78

Meta Guide

79 RSA Threat Content mapping with MITRE ATT&CK™

Meta Guide

TLD Lua Parser Options File

Caution: RSA strongly suggests that you do not subscribe to the options file. Subsequent
downloads of this file will overwrite all changes that you have made to the file.

Note the following:

 l If you deploy the options file, it can be found in the same directory as parsers:
/etc/netwitness/ng/parsers/.

 l The parser is not dependent upon the options file. The parser will load and run even in the
absence of the options file. The options file is only required if you need to change the default
settings.

 l If you do not have an options file (or if your options file is invalid), the parser uses the default
settings.

Note: The parser will never use both the defaults and customized options. If the options file
exists and its contents can be loaded, then the defaults will not be used at all.

The TLD_lua_options file contains the following options for controlling the parser:

 l deduplicate

 l localDomains

To change an option from false to true, edit the line inside the corresponding function, from

return false

to
return true

And similarly to go from true to false.

Note Modifying any of these options requires a service restart to take effect; a simple parser
reload is insufficient.

deduplicate
Default value: true

By default tld, cctld, and sld, meta are only registered once per session, regardless of the
number of times seen.

Disabling this option (setting to false) causes the parser to register all tld, cctld, and sld meta
even if they have already been registered previously for that session.

TLD Lua Parser Options File 80

Meta Guide

localDomains
List of domain suffixes or TLDs specific to the internal network. Multiple values must be
comma-separated, for example:
"local,here,example"

Default value: local

81 TLD Lua Parser Options File

Meta Guide

Traffic Flow Lua Parser

Introduction
The Decoder identifies the host which initiated a session as ip.src, and the responding host as
ip.dst. However, there is no indication which hosts are internal to your network and which are
external to your network. So, there is no indication whether a session was initiated by an internal
host to an external host, whether a session was initiated by a external host, or whether a session
was between two internal hosts. Nor, for internal hosts, is there any indication where on your
network an internal host resides. The traffic flow parser provides this directionality information.

The netblock name (netname meta) provides the context of where on your network a host
resides. Directionality (direction meta) provides the context of whether a session was initiated
from an internal host to an external host (outbound), from an external host to an internal host
(inbound), or was between two internal hosts (lateral). The following table shows how the
network traffic flow direction is determined according to source and destination IP addresses.

Source IP Destination IP
Traffic Flow

Direction

Internal

Internal Lateral

Named External
Outbound

Other

Named External

Internal Inbound

Named External
<none>

Other

Other

Internal Inbound

Named External
<none>

Other

Traffic Flow Lua Parser 82

Meta Guide

By default, the Traffic Flow Lua parser is not deployed on a Log Decoder for Network Decoder.
It should be deployed from Live to enable directionality support. You download the parser from
Live to deploy to a Network Decoder, in the same manner as you download and deploy all of the
RSA parsers. In addition to the parser, there is an Options file. You only need the Options file if
the default settings are not sufficient for your use case. At this time, only manual deployment to
a Log Decoder and Network Decoder is supported. The screenshot below shows the
Investigation view of these two pieces of meta being populated.

Setup
The Lua parser and Options file is supported on both the Network Decoder and Log Decoder,
but will only deploy through Live to the Network Decoder. Deployment will silently fail for the
Log Decoder; if you want the Traffic Flow parser installed on the Log Decoder, you must deploy
manually.

The parser and Options file are separate packages in Live. This means that any options file
customizations you make do not get overwritten if you update the parser itself. Thus, we do not
recommend subscribing to the Options file in Live.

If you need to edit any options, you should deploy the Options file at the same time you deploy
the parser itself. Make sure that you reload the parser after you edit the Options file. Make a
note that if the default settings cover your network to your satisfaction, then you do not need the
Options file.

Deploy to Network Decoders

To deploy the Traffic Flow parser to a Network Decoder:

 1. In the NetWitness Suite UI, select Live > Search.

 2. In the Search Criteria section, type "traffic flow" for Keywords.

83 Traffic Flow Lua Parser

Meta Guide

 3. In the Matching Resources pane, select both files returned: traffic_flow_options and
traffic_flow.

 4. Click Deploy.

This launches the Deployment Wizard.

 5. Use the Deployment Wizard to deploy to a Network Decoder.

 a. The two files, traffic_flow_options and traffic_flow, are shown in the Resources
screen. Click Next to proceed.

 b. In the Services screen, select a decoder, and click Next.

 c. In the Review screen, click Deploy.

Traffic Flow Lua Parser 84

Meta Guide

 d. Once the two files deploy, click Close.

You can navigate to the General tab in the Decoder and view the parser in the Parsers
Configuration pane:

Reload Parsers:

Options file is used to change the Traffic Flow Lua parser's option. When you change the
Traffic Flow Lua parser's option using the Options file, you must reload the parsers for the
changes to take effect. Use the Explore view or NwConsole to reload the parsers.

To reload the parsers using Explore view:

 1. Go to Admin > Services. Select the decoder.

 2. Click , and in the dropdown select View > Explore.

 3. Click

85 Traffic Flow Lua Parser

Meta Guide

. Right Click the Parsers in the dropdown.

 4. Select Properties. Click the dropdown box under Properties for … /decoder/parsers.

 5. Select Reload and click Send.

The parsers have been reloaded message is displayed under Response Output.

To reload the parsers using NwConsole:

 1. Log in to the decoder using NwConsole.

 2. Run the command /decoder/parsers reload.

Deploy to Log Decoders (For versions Prior to 11.0)

For RSA NetWitness Platform versions 11.0 and later, you can deploy to log decoders using
Live, in a similar manner as described in Deploy to Network Decoders above.

For earlier versions of RSA NetWitness, perform the following steps to install the Traffic Flow
Lua parser on Log Decoders.

Warning
The direction meta is a string; it only contains the last value written to it. If a log
parser writes direction meta and the Lua parser is deployed to a log decoder, then
that existing direction meta may be overwritten by the parser.

To deploy the parser manually on versions earlier than RSA NetWitness Platform 11.0:

 1. Download the Traffic Flow Parser and Traffic Flow Options File from Live.

 a. In the NetWitness Suite UI, select Live > Search.

 b. In the Search Criteria section, type "traffic flow" for Keywords.

 c. In the Matching Resources pane, select both files returned: traffic_flow_options and
traffic_flow.

 d. Select Create from the Package menu.

A resource bundle ZIP file is downloaded to your computer.

 2. Unzip the file that you downloaded. In the download path, there are two ZIP files, traffic_
flow_options.zip and traffic_flow.zip.

Traffic Flow Lua Parser 86

Meta Guide

 3. Unzip these files: you will see traffic_flow_options.lua, traffic_flow.luax and traffic_
flow.luaxtoken.

 4. Upload these three files to your Log Decoder.

 a. In the NetWitness Suite UI, select Administration > Services and select a Log
Decoder.

 b. Select Parsers > Upload.

 c. In the Upload Parsers dialog box, click , and navigate to where you saved the parser

files on your computer.

 d. Select all three files: traffic_flow_options.lua, traffic_flow.luax and traffic_
flow.luaxtoken.

 e. Click Upload.

The files get uploaded, and you can view them in the file list.

 5. Restart the Log Decoder service.

87 Traffic Flow Lua Parser

Meta Guide

Update XML Files

Note: This section only applies to versions prior to 10.6.2. For all newer versions, these
entries are delivered automatically.

Add Entries to the Index Concentrator File

You need to add entries to the index-concentrator-custom.xml on the Concentrators you would
like to index to the meta.

 1. Depending on your version:

 l For NetWitness 11.x: In the NetWitness menu, select ADMIN > Services.

 l For Security Analytics 10.x: In the Security Analytics menu, select Administration >
Services.

 2. Select a Concentrator.

 3. Select View > Config from the Actions menu.

 4. Select the Files tab, then select the index-concentrator-custom.xml file.

 5. Add the following lines:

<key description="Network Name" level="IndexValues" name="netname"
format="Text" valueMax="10000"/>
<key description="Traffic Flow Direction" level="IndexValues" name="direction"
format="Text" valueMax="10000"/>

Add Entries to the Table Map File (Log Decoders Only)

You need to add entries to the table-map-custom.xml file on the Log Decoder.

 1. Depending on your version:

 l For NetWitness 11.x: In the NetWitness menu, select ADMIN > Services.

 l For Security Analytics 10.x: In the Security Analytics menu, select Administration >
Services.

 2. Select a Log Decoder.

 3. Select View > Config from the Actions menu.

 4. Select the Files tab, then select the table-map-custom.xml file.

 5. Add the following lines:

<mapping envisionName="netname" nwName="netname" flags="None"/>
<mapping envisionName="direction" nwName="direction" flags="None"/>

Traffic Flow Lua Parser 88

Meta Guide

Update ESA Configuration
To be able to create ESA rules against the netname meta, you need to make netname an array.

To make netname an array:

 1. Log onto RSA NetWitness Platform as an administrator.

 2. Depending on your version:

 l For NetWitness 11.x: In the NetWitness menu, select ADMIN > Services.

 l For Security Analytics 10.x: In the Security Analytics menu, select Administration >
Services.

 3. Select the ESA service, then View > Explore.

 4. From the left pane, select Workflow > Source > nextgen.

 5. Add the meta key name 'netname' to the ArrayFieldNames.

Tuning
The following sections describe the parser default values, the options file, and present examples.

Parser Defaults

The default settings for the parser are as follows (these values are in the internal table, which
replaces the definitions table from the earlier version of the options file):

 l ["0/8"] = "broadcast"

 l ["10/8"] = "private"

 l ["127/8"] = "loopback"

 l ["169.254/16"] = "link-local"

 l ["172.16/12"] = "private"

 l ["192.168/16"] = "private"

 l ["224/4"] = "multicast"

 l ["240/4"] = "reserved"

 l ["255.255.255.255/32"] = "broadcast"

If these settings are sufficient, then you do not need to deploy the Options file.

89 Traffic Flow Lua Parser

Meta Guide

Options File

The Options file contains extensive comments, as well as all the defined default values. Note
the following:

 l Local subnets must be defined in "internal"

 l Named external subnets must be defined in "external". They will result in netname meta, but
be considered as "external" for purposes of directionality.

 l If a subnet is not listed, it results in other, for example , netname: other src.

 l Aggregation is recommended wherever possible.

For IPv4, note the following:

 l Use only CIDR notation. Specifically, don't use a netmask like "255.255.255.0"

 l Both shorthand and normal CIDR are valid.

 l If netmask is omitted, /32 is assumed.

For IPv6, note the following:

 l Use only prefix notation.

 l Both compressed and expanded addresses are supported.

 l If prefix is omitted, /64 is assumed (not /128).

 l Only IPv6 prefixes aligned with nibble (4-bit) boundaries are supported (/128, /124, /120, ...
/12, /8, /4). Subnets specified using non-aligned prefixes will not be used.

If you need to define subnets with prefixes that are not nibble-aligned, define multiple smaller
prefixes. For example, instead of

["2000:a:bc:dee::/63"] = "campus",

Use the following:

["2000:a:bc:dee::/64"] = "campus",
["2000:a:bc:def::/64"] = "campus",

Caution: RSA strongly suggests that you do not subscribe to the options file. Subsequent
downloads of this file will overwrite all changes that you have made to the file.

Note the following:

 l If you deploy the options file, it can be found in the same directory as parsers:
/etc/netwitness/ng/parsers/.

Traffic Flow Lua Parser 90

Meta Guide

 l The parser is not dependent upon the options file. The parser will load and run even in the
absence of the options file. The options file is only required if you need to change the default
settings.

 l If you do not have an options file (or if your options file is invalid), the parser uses the default
settings.

Note: The parser will never use both the defaults and customized options. If the options file
exists and its contents can be loaded, then the defaults will not be used at all.

Editing the Options File

On the Decoder

To change any of the options for the parser on the Decoder, you must edit the options file itself.
You do this from either:

 l A shell on the Decoder, or

 l In the NetWitness Suite UI: go to the Decoder > Config > Files.

On the Log Decoder

To change any of the options for the parser on the Log Decoder, you must edit the options file
itself. You do this from either:

 l A shell on the Log Decoder, or

 l In the NetWitness Suite UI: go to the Log Decoder > Config > Files.

IMPORTANT: Make sure that you reload the parser after you edit the options file.

Note: Changes take effect immediately. (This is not true for other parsers.)

Option File Details

Starting with version 2017.03.08.1 of the traffic_flow_options file, the file contains two tables:

 l internal. This table replaces the previous definitions table. Subnets listed here receive
netname meta and are considered internal for directionality.

 l external. Subnets listed here receive netname meta and are considered external for
directionality.

Note: In all prior versions to 2017.03.08.1, there is only one definitions table.

91 Traffic Flow Lua Parser

Meta Guide

Addresses matching neither table receive netname "other," and are considered external for
directionality.

For backwards compatibility, if the parser finds a definitions table rather than an internal table,
then definitions is used as internal. If the parser finds both, then it uses internal.

The tables internal and external for 'traffic_flow' are Lua tables that contain a list of netblocks
in CIDR notation. The syntax of each entry is:
["ip/prefix"] = "name",

For example:
["192.168.0.0/16"] = "private",

Shorthand notation is valid. For example, the following entry is equivalent to the previous
example:
["192.168/16"] = "private",

Caution: All aspects of the syntax are crucial, including the trailing comma. If the options file
is edited so as to become invalid, the parser will use default values.

Be sure to account for all of your environment's internal networks (but only these).

If a specific entry in the lua table isn't valid CIDR notation, it will be ignored. However, it will
not affect the rest of the table (so long as the table syntax is valid) and an error will be logged.
For example:
["10.1.1.0/a"] = "dmz",

This results in the following logged error message:
traffic_flow: invalid cidr '10.1.1.0/a'

Matching Rules

For matching, the most specific prefix for an IP "wins". For example, assume the options file has
both of the following entries:
["192.168.0.0/16"] = "private",
["192.168.1.0/24"] = "dmz",

The IP 192.168.1.1 will match "dmz", and the IP 192.168.2.1 will match "private".

The following keys will be matched against the networks listed in the table:

 l ip.src

 l ip.dst

 l alias.ip

 l ip.addr

 l orig_ip

Traffic Flow Lua Parser 92

Meta Guide

Examples

For each value of each of the above keys, meta is registered with the key "netname" as follows:

 l For ip.src: <name from entry> src

For example: private src

 l For ip.dst: <name from entry> dst

For example: netname: private dst

 l For the other keys: <name from entry> misc

For example: netname: private misc

If a value does not match an entry in the table, then the name "other" is used instead:

 l Example for ip.src: other src

 l Example for ip.dst: netname: other dst

 l Example for the other keys: netname: other misc

Further, for each src and dst pair meta "direction" is registered:

 l If ip.src is listed and ip.dst is "other":

direction: outbound

 l If ip.src is "other" and ip.dst is "listed":

direction: inbound

 l Both ip.src and ip.dst are listed, or neither are listed:

direction: lateral

Here is an example of what the options file looks like for versions 2017.03.08.1, and newer,
where the file contains both the internal and external network definitions:

Note: Some application rules leverage “direction = outbound” to help minimize false positives
and reduce noise. By listing web proxies as external, this allows these app rules to function as
expected if you have NetWitness visibility on the ‘inside’ of your web proxy. If NetWitness
has visibility on the ‘outside’ of your proxy, there is no need to set your web proxies as
‘external’, and the app rules will function as intended.

function internal()
--[=[INTERNAL NETWORKS
 For proper direction meta:
 (a) add all internal subnets
 (b) DO NOT add any external subnets here
 --]=]
 return {
 ["0/8"] = "broadcast",
 ["10/8"] = "private",

93 Traffic Flow Lua Parser

Meta Guide

 ["127/8"] = "loopback",
 ["169.254/16"] = "link-local",
 ["172.16/12"] = "private",
 ["192.168/16"] = "private",
 ["192.168.2.101/32"] = "HOST vineyard",
 ["224/4"] = "multicast",
 ["240/4"] = "reserved",
 ["255.255.255.255/32"] = "broadcast",
 }
end

function external()
--[=[NAMED EXTERNAL NETWORKS
 For proper direction meta:
 (a) DO NOT add any internal subnets here
 (b) add any desired external subnets
 --]=]
 return {
 ["1.2.3.0/24"] = "partner network vpn",
 ["104/8"] = "TESTNET-1",
 ["151.101/16"] = "TESTNET-2",
 ["172.16.0.0/24"] = "Web proxies",
 ["65.52/16"] = "DMZ",
 ["52.84.126.141/32"] = "KEEP_AN_EYE_ON_THIS_SYSTEM",
 }

The following is an example of the definitions table for prior versions of the options file (that
contained only one table):

function definitions()
 return {
 ["0/8"] = "broadcast",
 ["10/8"] = "private10",
 ["10.10.72.0/21"] = "topeka-lab01",
 ["10.10.80.0/21"] = "topeka-voip",
 ["10.10.88.0/21"] = "topeka-voip",
 ["10.10.96.0/21"] = "topeka-vpn",
 ["10.10.140.0/19"] = "campus-works",
 ["127/8"] = "loopback",
 ["169.254/16"] = "link-local",
 ["172.16/12"] = "private172",
 ["192.168/16"] = "private192",
 ["192.168.2.253"] = "***<<SourceCode_Server>>***",
 ["192.168.121.0/24"] = "hydrotestlab",
 ["192.168.150.101"] = "corporate-svr01",
 ["192.168.150.102"] = "corporate-svr02",
 ["192.168.150.103"] = "corporate-svr03",
 ["192.168.150.0/20"] = "corporate-netp150",
 ["224/4"] = "multicast",
 ["240/4"] = "reserved",
 ["255.255.255.255/32"] = "broadcast",
 ["201.101.141.0/24"] = "ACMElabB1F01R101",
 ["201.101.142.0/24"] = "ACMElabB1F01R102",
 ["201.101.143.0/24"] = "ACMElabB1F01R103",

Traffic Flow Lua Parser 94

Meta Guide

 ["201.101.144.0/24"] = "ACMElabB1F01R104",
 ["208.43.253.0/24"] = "brooklyn-b2f1l012",
 ["217.43.253.0/24"] = "brooklyn-b2f2l012",
 ["222.43.253.0/19"] = "brooklyn-b2f3l012",
 ["222.44.253.0/24"] = "brooklyn-b01SF",
 ["228.100.17.0/26"] = "brooklyn-DMZ01",
 ["228.100.18.0/27"] = "brooklyn-DMZ02",
 ["88.56.104.0/20"] = "remoteOffice-R201",
 ["147.22.56.0/21"] = "Branch-Services",
 }

Key Mappings and Defaults
Keys used for source (netname_src) and the determination of directionality:

 l ip.src

 l ipv6.src

Keys used for destination (netname_dst and the determination of directionality:

 l ip.dst

 l ipv6.dst

Keys used only for miscellaneous (netname_misc) not the determination of directionality:

 l alias.ip

 l ip.orig

 l alias.ipv6

 l ipv6.orig

 l ip.addr

 l ipv6.addr

Full default values:

INTERNAL

 l ["0/8"] = "broadcast",

 l ["10/8"] = "private",

 l ["127/8"] = "loopback",

 l ["169.254/16"] = "link-local",

 l ["172.16/12"] = "private",

95 Traffic Flow Lua Parser

Meta Guide

 l ["192.168/16"] = "private",

 l ["224/4"] = "multicast",

 l ["240/4"] = "reserved",

 l ["255.255.255.255/32"] = "broadcast",

 l ["fc00::/8"] = "unique-local",

 l ["fd00::/8"] = "unique-local",

 l ["fe80::/12"] = "link-local",

 l ["fe90::/12"] = "link-local",

 l ["fea0::/12"] = "link-local",

 l ["feb0::/12"] = "link-local",

 l ["ff00::/8"] = "multicast",

EXTERNAL

 l ["ff0e::/16"] = "multicast global",

 l ["ff1e::/16"] = "multicast global",

Traffic Flow Lua Parser 96

Meta Guide

Configure Windows Collection

Overview
This topic provides details about configuring Windows collection so that NetWitness Suite can
collect logs from Microsoft Windows machines. In this document, the word "Collector" refers to
either the NetWitness Suite Log Collector or the NetWitness Suite Virtual Log Collector. The
word “Channel” refers to a Windows Event Log, for example, a Security Application, System,
Forwarded Event, or DNS.

Windows Eventing Collection is the collection of events from Windows systems using the
Windows Remote Management (WinRM) protocol, and is a Microsoft implementation of the
WS-Management protocol, which runs as a service on most Windows desktops and servers. This
service uses HTTP or HTTPS as its transport mechanism. The request / responses are wrapped
in a SOAP envelope (a simple XML wrapper) to give them structure.

The WinRM service is not set up to run by default on all Windows operating systems, nor is it
configured to listen for requests by default, which means that in order to use WinRM, you must
configure it on the systems you are using. The Microsoft WinRM Configuration guide describes
how to configure the WinRM service and its sub layers, either manually or by using group
policies, to allow the Collector to collect Windows event logs. The Test and Troubleshoot
Microsoft WinRM guide provides detailed information about resolving WinRM configuration
issues. These documents are available as a PDF Portfolio on RSA Link here: Microsoft WinRM
Configuration and Troubleshooting.

In its simplest form, the WinRM protocol is used by the Collector to send a subscribe request
that contains filters, such as channels (event log names) and exclusions (or inclusions), for
certain Windows event types. Bookmarks, which are also included in subscribe requests, are
numbers that correspond to record IDs in Windows event logs. NetWitness Suite stores these
numbers so that if the Collector is restarted, it can restart where it left off from where it was
collecting from previously. They are actual event record IDs which you can view in the
corresponding Windows event log by highlighting an event and clicking Properties. When a
subscribe request is successful, it is followed by successions of pull commands to retrieve
events from a target system, and finally, an unsubscribe request is sent to end the poll cycle. To
authenticate to the Windows system, NetWitness Suite allows you to select Basic or Negotiate
(Kerberos) authentication types in the event category section of an event source to provide
credentials to the target system while establishing a connection.

When the event category of an event source is configured for the Negotiate authentication type
(Kerberos is the default protocol), the Collector requires access to a domain controller via port
88 UDP. The Collector needs to retrieve a TGT for the log collection user account, and an ST
for each of the Windows event sources being collected from in order to provide credentials for
access to the WinRM service on each system. If a firewall exists between the Collector and the
domain controllers, the firewall must allow at least UDP traffic on port 88 inbound to the domain
controllers.

97 Configure Windows Collection

https://community.rsa.com/
https://community.rsa.com/docs/DOC-43306
https://community.rsa.com/docs/DOC-43306

Meta Guide

In order to send requests to Windows systems, a listener must be available on each system, that
is, logic in the WinRM service that opens a TCP port to listen for incoming requests. In deciding
whether to use HTTP or HTTPS as the type of protocol, consider the following information:

 l If you use Basic authentication type in the NetWitness Suite event source configuration, using
HTTP as the WinRM transport protocol (when creating the listener) is not advisable. Since
HTTP is not encrypted, and Basic authentication merely adds Base64-encoded credentials to
the header of the request to Windows systems, this is not secure, hence the caution below.

 l If you use Negotiate authentication type in the NetWitness Suite event source configuration
with HTTP, the credentials are already passed in the form of an encrypted Windows token, so
no leakage of credentials will occur. However, the event log payload from the systems is in
the clear – it is not encrypted.

 l The HTTPS transport with either Basic or Negotiate authentication type encrypts both
credentials and payload at the expense of being more difficult to configure across a large
number of Windows systems.

Caution: When you use Negotiate as the authentication type, the Windows token that is
passed to the target system is encrypted. However, if you use Basic as the authentication type,
and you use HTTP, the Log Collection user’s user ID and password are sent in the HTTP
header with only Base64 encoding, which is not secure. If you use Basic as the authentication
type, RSA recommends using HTTPS.

When a collector poll cycle begins, a TCP connection to the WinRM listener port on the target
system is established. The default port for this connection is 5985 for HTTP, and 5986 for
HTTPS, but these can be overridden by using manual commands to create the listener, or via
GPO. If a firewall exists between the Collector and the target systems, you must configure a
rule to allow at least inbound TCP connections to those systems on the WinRM ports.

Note: If you are using quickconfig and requesting HTTP, the firewall rule is applied
automatically. For more information, see LINK TO QUICKCONFIG. When an event
category is configured for Basic authentication, you only need a WinRM firewall port rule for
each system being collected from. Because no Kerberos connection is used, a connection from
the Collector to the domain controller is never created.

Note: The NetWitness Suite Log Collector can be used to collect Windows events from
domain controllers, non-domain controller systems in a domain, and workgroups. For domain
controllers and non-domain controller systems in a domain, it is advisable to use a domain
account. (In fact, you must do this for a domain controller.) A standalone system or a
workgroup-only system requires that a local account be used.

There are two areas that complicate WinRM deployment, especially if you are using Windows
Group Policy Object (GPO):

Configure Windows Collection 98

Meta Guide

 l Using HTTPS transport instead of HTTP (see explanation of each above)

 l Using a non-Administrative account as the Log Collection user account (which is highly
recommended). A non-Administrative account on either domain-based, standalone or
workgroup systems must have certain permissions to successfully connect and to read events.

The steps to create these permissions can be performed manually on each target system or by a
combination of using GPO and scripting. (Currently, there is no way to enable WMI read rights
with GPO, which affects SID enumeration by the Collector, or a reliable way to enable an
HTTPS listener via GPO.)

You can use an RSA supplied script to accomplish these tasks. See the Microsoft WinRM
Configuration guide for details on how to configure an HTTP or HTTPS listener on a system and
to set permissions for a non-administrative account to collect from that system. The same script
can be pushed as a logon script via GPO to apply the same configuration across a broad number
of systems. RSA recommends that you perform a test run of the script on a lab system in a lab to
observe what it does, before pushing it out in a large scale manner via GPO. See the Microsoft
WinRM Configuration guide for a full list of script features.

The following user permissions must be enabled on each system from which events are collected
for a non-Administrative Log Collection user account:

 l Windows Management Instrumentation (WMI) Remote Enabled permission

 l WMI Read permission (cannot be enabled with GPO)

 l Membership in the built-in Event Log Readers group to physically access the event logs
(cannot be enabled with GPO, but for domain systems only, you can add the Log Collection
user account to the domain-level Event Log Readers group).

Finally, apart from the listener and non-administrator user complications, because the WinRM
service on Windows systems runs with Network Service account privileges by default, the
Windows Security Event Log requires an Access Control List (ACL) to allow the Network
Service account to read from it. This step can be easily accomplished either manually or with
GPO.

In summary, while enabling WinRM in your environment, there are some choices that should be
made up front. These are:

 l What type of Log Collection user account do I use (administrator vs. non-admininstrator)?
Non-administrator is highly recommended to limit exposure to administrator credentials. Even
though administrator credentials are stored in NetWitness Platform in an encrypted lockbox,
RSA still recommends not using an administrator account.

 l Should I use HTTP or HTTPS?

99 Configure Windows Collection

Meta Guide

 l HTTP should not be used with Basic authentication, since it exposes the credentials in the
header of the request to the system being collected from.

 l When you use Negotiate authentication with HTTP, the credentials (in this case, a
Windows Service Ticket) are encrypted, but the event log data payload is not.

 l There are two ways to use HTTPS; with, or without mutual authentication. In either case,
the payload is encrypted and systems from which event data is being collected must have
valid certificates that have at least client and server authentication enabled in the
Enhanced Key Usage (EKU) bits. Using full mutual authentication requires the extra step
of installing each system's certificate on the Collector using the NetWitness Platform user
interface, which provides the means for the Collector to verify the host from which it is
collecting the logs. Full mutual authentication requires that the Collector can also reverse
look-up the IP address of the system to verify the hostname in the certificate's domain
name. If this level of verification is not required, setting up HTTPS is a little simpler, since
installing a certificate from each system can be cumbersome.

 l Do I enable settings manually or by using GPO?

 l In most production environments, using a GPO is the preferred method of enabling
WinRM. This offers good flexibility for the machines that are targeted (for example, IP,
subnet, or a machine list from Active Directory). One drawback is that if you are using
HTTPS or a non-administrator user, there are steps that cannot be done directly with GPO.
These steps must be performed either manually or with a login script, as described in
the Microsoft WinRM Configuration guide.

 l Using a GPO is a good way to push certificates to systems if HTTPS is required, rather
than manually creating one per system (however, this can be done by auto-enrollment).

 l The decision can come down to the numbers of systems involved: If there are only a
relatively small number of systems, the manual method may be much faster than
testing, getting approval, and finally pushing a GPO out.

The first step is to create the non-Administrative collection user account (if none already exists)
as described in the next section.

Create a User Account for RSA NetWitness Platform
RSA recommends that the user account that RSA NetWitness Platform uses to authenticate to
the event source has only enough privileges to allow event collection.

Configure Windows Collection 100

Meta Guide

If your event source is a part of a Windows domain, you must have your domain administrator
create a user account on the domain controller with a password that is sufficiently complicated
as per your company policies. If this password is set to expire, remember that collection will
stop when this occurs. Hence the password must be maintained (refreshed) outside of
NetWitness Platform, and the event sources in NetWitness Platform updated when
the password is changed in the future. If the event sources are not part of any domain (for
example, standalone or workgroup systems), you must create this user account on each of the
individual systems being collected from (event sources).

For standalone systems, create a local non-administrator user account:

 1. On the event source, click Start > Administrative Tools > Server Manager to open the
Server Manager console.

 2. Use Server Manager to create a new user account with the following parameters:

Note: You must create one user account for each domain you want to collect from. Ensure
that there are no local accounts with the same user name.

 l User name: Enter a user name for the account.

For example, logcollector.

 l Full name: Enter a full name for the user account.

 l Description: Enter a description of the user account.

 For example, Account for remote collection of events in RSA NetWitness Log
Collector.

 l Password: Enter a strong password, and select User cannot change password and
Password never expires.

After you create users, you must verify the WinRM listener and the assignment of privileges to
the non-Administrative user. This procedure varies depending on whether you are using the GPO
or manual mode for configuration. Please follow the steps in the Microsoft WinRM Configuration
guide.

101 Configure Windows Collection

	Custom CEF Parser
	Context
	Functionality and Characteristics
	Details
	Create Custom CEF Parser
	Add Vendor, Product, Device, and Group Definition
	Override Existing Device Definitions
	Override Existing CEF Tag to NetWitness Meta Tag Mapping
	How metaName Works
	Override Existing CEF Tag to NetWitness Meta Tag Mapping For a Specific Device

	Deploy the Custom CEF Parser

	Live Content Search Tags
	Context

	Context Hub Lists in ESA Rules
	Use CH Lists in ESA Rules
	OOTB Context Hub Lists
	How to Update a Context Hub List
	How to Create a Context Hub List
	How to Add a Context Hub List as an Enrichment source
	Create an ESA Rule that Uses a Context Hub list
	Example of an ESA Rule that Uses a CH list
	EPL Syntax for whitelists and Blacklists
	Known Limitations
	Can the Context Hub lists comparison be case-insensitive?
	What are the limitations between Basic Rule Builder and Live / Advanced Rules?
	What happens when you deploy an 11.1 CH List ESA rule to version prior to 11....

	HTTP Lua Parser Options File
	registerURL
	splitQuery
	useOrigIP
	refererPath
	userAgent
	respReason
	decompress
	advanced
	customHeaders

	NetWitness Investigation Model
	Model Hierarchy
	Threat
	Examples
	Attack Phase
	Malware

	Identity
	Examples
	Authentication
	Authorization
	Accounting
	Behavior Analytics

	Assurance
	Examples
	Governance
	Risk
	Compliance

	Operations
	Examples
	Situation Awareness
	Event Analysis

	LDAP Parser Options File
	ports
	idOnly
	parseResponses

	Log Parser Customization
	Loading Order
	File Location and Naming
	Header and Message Duplication
	Examples
	Example Code
	Common Steps

	Add a New Item
	Add New Header
	Add New Message
	Add New Valuemap
	Add New Tagval

	insertBefore and insertAfter
	Modify an Existing Item
	Modify Header
	Modify Message
	Modify Valuemap
	Modify Tagval

	Lua Debugging Tool
	Mail Lua Parser Options File
	registerEmailSrcDst
	parseQuoted
	registerAddressHosts
	parseReceived

	Packet Parsers
	Context
	Packet Parsers in NetWitness Suite
	Discontinued Packet Parsers

	Phishing Lua Parser Options File
	Deduplicate Host Registration
	Check Host Consistency
	Whitelist Domain
	Register URL Components
	Register Entire URL
	Host Key

	SMTP Lua Parser Options File
	registerEmailSrcDst
	registerAddressHosts
	errorCodeOnly

	System Parsers
	Context
	System Parsers in RSA NetWitness Platform

	RSA Threat Content mapping with MITRE ATT&CK™
	Introduction to MITRE ATT&CK™ Navigator
	Generate of MITRE ATT&CK™ Metadata for RSA NetWitness Content
	Configure RSA NetWitness for Mitre ATT&CK™ Metadata

	TLD Lua Parser Options File
	deduplicate
	localDomains

	Traffic Flow Lua Parser
	Introduction
	Setup
	Deploy to Network Decoders

	Reload Parsers:
	Deploy to Log Decoders (For versions Prior to 11.0)

	Update XML Files
	Add Entries to the Index Concentrator File
	Add Entries to the Table Map File (Log Decoders Only)

	Update ESA Configuration
	Tuning
	Parser Defaults
	Options File
	Editing the Options File
	Option File Details
	Matching Rules
	Examples

	Key Mappings and Defaults

	Configure Windows Collection
	Overview
	Create a User Account for RSA NetWitness Platform

